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Prediction of on-target and off-target  
activity of CRISPR–Cas13d guide RNAs  
using deep learning

Hans-Hermann Wessels    1,2,6, Andrew Stirn1,3,6, Alejandro Méndez-Mancilla    1,2, 
Eric J. Kim3, Sydney K. Hart    1,2, David A. Knowles    1,3,4,5  & 
Neville E. Sanjana    1,2 

Transcriptome engineering applications in living cells with RNA-targeting 
CRISPR effectors depend on accurate prediction of on-target activity and 
off-target avoidance. Here we design and test ~200,000 RfxCas13d guide 
RNAs targeting essential genes in human cells with systematically designed 
mismatches and insertions and deletions (indels). We find that mismatches 
and indels have a position- and context-dependent impact on Cas13d 
activity, and mismatches that result in G–U wobble pairings are better 
tolerated than other single-base mismatches. Using this large-scale dataset, 
we train a convolutional neural network that we term targeted inhibition 
of gene expression via gRNA design (TIGER) to predict efficacy from guide 
sequence and context. TIGER outperforms the existing models at predicting 
on-target and off-target activity on our dataset and published datasets. We 
show that TIGER scoring combined with specific mismatches yields the first 
general framework to modulate transcript expression, enabling the use of 
RNA-targeting CRISPRs to precisely control gene dosage.

Programmable RNA-guided, RNA-targeting type VI clustered regularly 
interspaced short palindromic repeats (CRISPR)–CRISPR-associated 
proteins (Cas; Cas13) enable direct manipulation of cellular RNAs with 
high precision compared to previous RNA-targeting technologies1–5. 
A growing number of RNA-engineering technologies have been devel-
oped using nuclease active Cas13 or inactive dCas13 effector proteins6. 
These methods critically rely on the ability of Cas13 to distinguish 
between binding sites in target RNAs and closely related secondary 
(off-target) binding sites based on the complementarity between guide 
RNA (gRNA) sequence and bound RNA sequence. In general, the goal 
is to maximize on-target gRNA activity while minimizing off-target 
effects. While progress has been made in understanding Cas13 gRNA 
design rules for nuclease activation and on-target activity3,7–11, rela-
tively less is known about Cas13 off-target binding and activation.  

Our understanding is currently limited to Cas13a that has been used in 
diagnostics10,11 with only a few studies of off-target activity for Cas13d 
systems7,9, which are more commonly used for in vivo perturbation. 
Several recent examples use Cas13 effectors in preclinical model sys-
tems12–17, emphasizing the need for high precision for any potential 
human therapeutics.

Understanding the determinants of gRNA activity can not only 
improve target specificity but also enable controlled/precise attenu-
ation of gene dosage. Notably, biological systems often rely on relative 
gene dosage as opposed to a binary on-off state. Dose-dependent gene 
expression is crucial to maintain balanced stoichiometry between 
members of multiprotein complexes18 or during embryonic devel-
opment19, and underlies X-chromosome inactivation20. Moreover, 
somatic copy number variation and subsequent gene amplification 
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(NT; negative control) gRNAs (FDR < 0.01; Fig. 1e and Supplementary 
Fig. 1e). This fraction of active Q4 gRNAs ranged from ~95% (104 of 
110 gRNAs) for EIF3B to ~49% for NUP133 (53 of 109 gRNAs; Fig. 1f and 
Supplementary Fig. 1f). We found that active gRNAs were distributed 
in clusters along the target transcript sequence, yielding significant 
similarities between neighboring gRNA efficacies (autocorrelations of 
r = 0.13–0.60; Fig. 1g,h), in agreement with our previous study (CD46 
r = 0.66; CD55 r = 0.65 and CD71 r = 0.4)7.

Indels are more deleterious than substitutions in guide RNAs
For 600 PM gRNAs predicted to have high activity by RFon (quartile Q3 
or Q4), we designed 108,600 gRNA variants (18,100 per gene). These 
variant gRNAs include 83,400 gRNAs with single, double or triple base 
substitutions. We also included 25,200 gRNAs containing single or 
double indels (Fig. 1a,b). We found 66.1% of PM gRNAs to be active 
(log2(FC) < −0.5, FDR < 0.01; Fig. 2a; Methods). Accumulating base sub-
stitutions gradually decreased gRNA efficacy from single mismatches 
(SMs, 34.4% active gRNAs) to random triple mismatches (RTMs, 3.3% 
active gRNAs; Fig. 2b). Overall, base substitutions were better tolerated 
than indel variants such as single nucleotide deletions (SD) or single 
nucleotide insertions (SI) within the gRNA sequence (guides active—SM, 
34.4% > SD and 20.7% > SI 17.9%).

Next, we calculated the relative activity for all gRNA variants rela-
tive to their cognate PM gRNAs (Methods). Most SM variants resulted 
in modest decreases in activity compared to the cognate PM gRNA 
(Fig. 2c). In contrast, single indels resulted in a greater loss of activity 
compared to SM variants with the greatest loss of activity for insertions 
in the central region of the gRNA (Fig. 2d,e). Unlike base substitutions, 
indels introduce bulges on either gRNA or target sides, respectively. 
Because the gRNA is embedded within the Cas13d enzyme28, gRNA posi-
tioning is likely more constrained than target sequence arrangement 
within the ternary Cas13–gRNA–target complex. This may explain why 
RNA bulges on the gRNA side (as introduced by nucleotide insertions) 
are the most disruptive.

We also confirmed the presence of the SM-intolerant seed 
sequence centered on guide nucleotide positions 18 (ref. 7; Fig. 2f). 
Single-base substitutions outside the seed region led to a milder attenu-
ation of relative gRNA efficacy for all SM gRNAs. We noted that A-to-G 
and to a lesser extent C-to-U substitutions within the gRNA had a milder 
effect than other substitutions, including in the seed region (Fig. 2f). 
A-to-G substitutions lead to G–U wobble pairing with the G on the 
gRNA side, while C-to-U substitutions have the G in the target site. 
We found that for all mismatch types, the contribution of G–U wob-
bles ameliorated the relative decrease in efficacy from the mismatch  
(Fig. 2g and Supplementary Fig. 1h).

A deep learning model to predict guide RNA efficacy
Existing approaches to model Cas13d efficacy7–9 predict knockdown 
efficiencies only for gRNAs perfectly matching their target site. 
Although large-scale off-target screens have empowered predictive 
modeling for DNA-targeting CRISPRs like Cas9 (refs. 26,29–36) and 
Cas13a-mediated RNA diagnostics in vitro10, there have not been sys-
tematic efforts to learn an off-target model for RNA-targeting CRISPRs 
in vivo. Toward this end, we adopted a convolutional neural network 

have been associated with cancer21 and a large number of human 
genetic diseases22.

Precise modulation of gene expression in mammalian systems 
can be achieved in multiple ways. For example, synthetic promoter 
sequences23 or tetracycline-dependent promoter constructs24 can 
be used to modulate gene expression. Similarly, the insertion of 
cis-regulatory elements such as miRNA binding sites in the 3′UTRs 
of endogenous genes renders them susceptible to the recruitment 
of the endogenous RNA surveillance and silencing machinery25. Such 
approaches, however, require a considerable amount of engineering 
on an individual target basis. In contrast, programmable nuclease-null 
(dCas9) CRISPR systems provide a flexible and scalable alternative 
for systematic titration of gene expression26. One caveat is that epige-
netic effector domains commonly fused to dCas9 (for example, KRAB 
domain) may act more in a switch-like fashion27.

Here we set out to comprehensively investigate the effects of 
closely related gRNA variants on target knockdown and predict the 
on-target and off-target activity of Cas13d in human cells. We are able 
to achieve strong performance predicting on-target efficacy with a 
deep learning prediction model trained on both perfect match (PM) 
and mismatched gRNAs. Leveraging the model’s insights into target 
specificity and activity, we propose and validate a new RNA-targeting 
CRISPR-based method for titration of gene dosage.

Results
RfxCas13d screens for perfect match and variant guide RNAs
To systematically assess the efficacy of RfxCas13d gRNAs, we designed 
~120,000 Cas13d gRNAs with a diverse set of mismatches and indels 
to target known essential genes (Fig. 1a,b and Supplementary Data 1 
and 2). This gRNA pool contains 10,000 PM gRNAs for 16 genes and 
108,600 gRNAs with designed mismatches for 600 PM gRNAs for six 
of these genes. In this manner, we can compare how each engineered 
gRNA mutation impacts Cas13d activity related to its cognate PM gRNA. 
We designed the mismatch gRNAs to contain 1, 2 or 3 nucleotide mis-
matches and the indel gRNAs to contain 1 or 2 nucleotide indels. For 
both mismatches and indels, we designed separate groups of gRNAs 
with adjacent placement of mismatches/indels or random spacing of the  
mismatches/indels.

Targeting known essential genes in human cells, we performed cel-
lular fitness (dropout) screens with the expectation that cells will drop out 
of the population over time depending on the relative gRNA activity and a 
corresponding degree of essential gene depletion (Fig. 1c). We lentivirally 
transduced a library of 120,000 crRNAs into a monoclonal HEK293FT cell 
line with doxycycline-inducible nuclear-localized RfxCas13d nuclease7. 
We found that gRNA counts and gRNA depletion (fold change (FC) relative 
to the gRNA abundance at an early time point) were highly reproducible 
between replicate screens, time points and gRNA categories (Fig. 1d, 
Supplementary Fig. 1a–d and Supplementary Data 3 and 4).

We first validated the performance of our previous random 
forest on-target model (RFon)7 for PM gRNAs. For PM gRNAs, the 
23 nt of the spacer region contains the reverse complement of the 
intended RNA target site. Specifically, 70.1% of predicted most-active 
quartile (Q4) gRNAs depleted more strongly than expected based 
on a false-discovery rate (FDR) calculated using the nontargeting  

Fig. 1 | Pooled CRISPR–Cas13 essentiality screen assaying Cas13d gRNA 
efficacy. a, Design of pooled CRISPR–Cas13d screen for mapping gRNA variants 
with mismatch and indel changes to PM gRNAs. b, Composition of gRNA library 
containing 120,000 perfectly matching and mismatched gRNA sequences 
targeting the coding region of essential genes. c, Abundance of individual gRNAs 
was measured in TetO-RfxCas13d-HEK293FT cells over 30 d (n = 3 independent 
transduction replicates). d, The Pearson correlation of gRNA abundance as 
log2(FC) on day 15 and day 30 relative to the day 0 input representation showing 
PM gRNAs as a mean of three replicates (n = 13,782). e, Fraction of active gRNAs 

(log2(FC) < −0.5) for PM gRNAs separated by RFon quartile predictions. f, Fraction 
of active (log2(FC) < −0.5) predicted quartile 4 (Q4) PM gRNAs for all 16 essential 
gene targets. g, Relationship between median distance between neighboring PM 
gRNAs and autocorrelation of log2(FC) at lag = 1 (n = 16 target gene transcripts). 
Line indicates linear regression and 95% confidence interval with the Pearson 
correlation (r) and P value (two-sided t-test). h, Distribution of PM gRNAs 
along the coding region of the 16 target gene transcripts and their log2(FC) 
enrichments. Negative log2(FC) values indicate better transcript knockdown.  
ρ, autocorrelation of log2(FC) with lag = 1.
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(CNN) architecture similar to those pioneered in computer vision37,38 
to predict a guide’s efficacy from a one-hot encoding of its sequence. 
Similar to a previous CNN for Cas9 off-target prediction26, our model 

has two convolution layers followed by a max-pooling layer and then 
interleaves three dropout and dense layers for a total of two hidden 
layers plus an output layer.
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Our model has the following two architectural augmentations 
beyond those used in a previous study: additional sequence context 
flanking the 23 nt target site and the flexibility to input a vector of 

nonsequence features at our first dense layer. We considered six groups 
of nonsequence features as follows: (1) crRNA folding minimum free 
energy (MFE), (2) the RNA–RNA hybridization MFE between spacer and 
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b, Fraction of active gRNAs for gRNAs as shown in a. c–f, Relative targeting activity 
(fraction of parental PM gRNA log2(FC)) of gRNAs for all PM gRNA derivatives 
with mismatches or indels at the indicated position relative to their cognate PM 
gRNAs (n = 388 reference PM gRNAs with log2(FC) < −0.5. Each cell indicates the 
mean of gRNAs). c, Left: heatmap depicting all mismatch types. Right: boxplot 
highlighting the full distribution of relative gRNA activity for SM gRNAs.  

d, Left: heatmap depicting all deletion types. Right: boxplot highlighting the SD 
gRNAs. e, Left: heatmap depicting all insertion types. Right: boxplot highlighting 
the SI gRNAs. f, Detailed representation of relative activity for SM gRNA 
separated by reference guide nucleotide (bottom) or substitution identity (top) 
for each mismatch position. g, Relative targeting efficacy for gRNAs containing 0 
or 1 G–U wobble base pairs compared to unpaired mismatches for all mismatched 
gRNA types (n = 388 reference PM gRNAs with log2(FC) < −0.5). All gRNA 
abbreviations are defined in Fig. 1a. For boxplots in c–e and g, the boxes indicate 
the median and interquartile range (IQR) with whiskers indicating 1.5× IQR.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01830-8

target site (multiple positions), (3) target accessibility (that is, a lack 
of predicted secondary structure in multiple windows), (4) the target 
site’s proximity to an exon–exon junction (5′ distance, 3′ distance), (5) 
the target site’s location within the transcript (relative position in CDS) 
and 6) binary features related to the gRNA’s secondary structure (folded 
repeat and G-quadruplex). We termed this deep learning approach as 
Targeted Inhibition of Gene Expression via gRNA design (TIGER; Fig. 3a).

We first sought to determine the optimal flanking target sequence 
context when using only nucleotide sequence or all features (Fig. 3b 
and Supplementary Fig. 2a). We added additional context to just the 
5′-end, just the 3′-end and equally to both ends and predicted gRNA 
efficacy using tenfold cross-validation (CV) over target sites (Supple-
mentary Note). Consistent with findings from another recent study8, 
we found that additional 5′ target site context of three nucleotides 
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Fig. 3 | A deep learning model to predict optimal Cas13d gRNAs. a, TIGER 
combines one-hot-encoded guide and target sequences for sequence input, 
following an AlexNet architecture but allowing for nonsequence features as 
inputs to the first dense layer. b, Correlation of predictions with additional 
sequence context (5′ only, 3′ only and combined 5′ and 3′) to the 23nt gRNA 
target site (tenfold CV randomized at the target site level) using a sequence-only 
model. H0 denotes the best-performing condition and all differences between 
other conditions and H0 are significant (P < 0.05, Steiger’s test53). c, The effect 
of including different feature groups (individually and cumulatively) on the 
correlation of predictions aggregated from the heldout target sites (n = 10 
random folds). We present feature groups in descending order of increased 
correlation (individually). d, ROC curve and other performance metrics for 
predictions aggregated from the heldout genes (n = 16) of the survival screen of 
essential genes. e, ROC curve and other performance metrics for all gRNAs from 

a previously published screen using flow cytometry of cell surface proteins7. We 
employ a Steiger’s test53 for the Pearson and Spearman comparisons, DeLong’s 
test54,55 for AUROC comparisons and a bootstrapped Kolmogorov–Smirnov 
test56 for AUPRC comparisons (d,e). Values denote aggregate performance 
over CV folds and error bars denote ±2 s.e. f, Design of pooled CRISPR–Cas13d 
screen targeting 5,166 genes with eight high-efficacy gRNAs from TIGERcombined 
predictions. g, The top ten most depleted genes show consistent depletion in 
each cell line (n = 8 gRNAs per target gene). Dotted lines (black) indicate the 
1st and 99th percentiles for NT gRNA distribution. h, Fraction of active gRNAs 
(more depleted than the 99th percentile of the NT gRNAs) as a function of gene 
depletion. Gray lines indicate 99th percentile of NT gRNA distribution for HAP1 
(solid) and HEK293FT (dashed) cells. i, ROC curve for DepMap essential genes for 
screens depicted in f–h (n = 1,082 essential genes, n = 458 nonessential genes). 
Numbers in parenthesis next to each cell line name indicate AUROC.
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was optimal for the sequence-only model. However, the impact of this 
additional context is reduced when including nonsequence features, 
which capture 5′-end target accessibility and likely make the extra 5′ 
context redundant. When analyzing the impact of each nonsequence 
feature in TIGER, we find that target RNA accessibility yields the great-
est increase in performance (Fig. 3c).

Although our CNN is a regression model that predicts FC in guide 
abundance, we can also threshold our predictions to classify active 
guides versus inactive ones. We again identified active gRNAs based 
on an empirical FDR calculated from the NT gRNAs (FDR < 0.01). To 
best assess generalization across the transcriptome, we aggregated 
predictions across gene-level CV (holding all gRNAs for each of the 
16 genes in turn) to compute correlations between predictions and 
observations (Pearson and Spearman correlations), area under the 
receiver operating characteristic curve (AUROC) and area under the 
precision–recall curve (AUPRC; Fig. 3d and Supplementary Fig. 2b). 
For each of these metrics, we estimated an upper bound by taking 
advantage of the three biological replicates of our Cas13d essential 
gene screen, quantifying the error when using a heldout replicate to 
predict the mean of the other two replicates. Across all four evaluation 
metrics, we find that TIGER trained on PM gRNAs in combination with 
mismatched gRNAs (TIGERcombined) outperforms or matches TIGER 
trained on PM alone (TIGERon-target) and yields superior performance 
compared to our previously published model (RFon)7 and two recent 
deep learning models8,9. The gene-level CV (all gRNAs for a target gene 
are held out from the training set) ensures that, during training, TIGER 
does not have access to any data related to the particular gene used 
for evaluation.

In addition to holding out all gRNAs for individual genes, we 
repeated these experiments with target site-level or gRNA-level CV 
(Supplementary Fig. 2c–h). Holding out target sites ensures that a PM 
gRNA’s mismatched variants will not be used in training (for example, 
active SM gRNAs are highly informative of their PM parents; Supple-
mentary Note). Under these CV strategies, the on-target and combined 
models observe a boost in performance relative to gene-level CV. Here 
too, the combined model outperforms all other considered models. 
Both TIGER models perform close to this estimated upper bound for 
the Spearman correlation, suggesting that they are adept at filtering 
variation due to technical noise.

In addition to the survival screen with essential gene-targeting 
gRNAs, we further evaluated model performance using a separate 
gRNA dataset with a different phenotypic selection (flow cytometry of 
cell surface proteins7, which has been used by other groups to assess 
generalization performance8,9. Specifically, we use PM gRNAs from 
our survival screen as training data (PM and mismatched gRNAs in 
case of TIGERcombined), holding out PM gRNAs from the cell surface 
protein screen as test data7. To compare with our previous RFon model, 
we retrained it solely on the larger essentiality screen dataset (Fig. 1a).  
Notably, this validation dataset contains no genes or target sites in 
common with our survival screen. When testing generalization per-
formance on this validation dataset, we find that TIGERcombined and 
TIGERon-target yield best-in-class predictions (Fig. 3e and Supplementary 
Fig. 2i). To further benchmark TIGER, we also trained a linear regres-
sion model and a recurrent neural network with Bidirectional Gated 
Recurrent Unit (BiGRU) model and, across both datasets, we found 
that TIGER was superior to linear regression and comparable to the 
recurrent neural network (Supplementary Fig. 3). Taken together, we 
find that TIGER’s predictions generalize over different screen modali-
ties (cell proliferation and surface marker expression) and target genes 
(essential and nonessential).

Feature importance by Shapley additive explanations
To determine TIGER’s learned gRNA design rules, we performed a ten-
fold CV of our combined model (TIGERcombined) with target site-level 
CV. For each holdout, we collected Shapley additive explanations 

(SHAP)39 values for sequence and nonsequence features. For sequence 
features of PM gRNAs, we observed a strong contribution of G and 
C nucleotides in the seed region (nucleotides 15–21) of the gRNA 
(Supplementary Fig. 4a,b), reflecting the local importance of G and 
C nucleotides7,8. Similarly, we examined the Pearson correlations and 
SHAP values for the gRNA substitutions (Supplementary Fig. 4c,d). 
We found that the CNN model correctly learned the increased impor-
tance of SMs in the seed region including the differential contribution 
of G–U mismatched base pairing. We also examined SHAP values for 
nonsequence features for PM guides alone or all PM plus mismatched 
guides (Supplementary Fig. 4e,f). Among nonsequence features, we 
found that RNA–RNA hybridization (as in target site accessibility, 
gRNA-RNA hybridization MFE and crRNA folding MFE) had the larg-
est contributions to model predictions, consistent with our earlier  
findings (Fig. 3c).

TIGER consistently predicts highly active gRNAs
Next, we sought to test the generalizability of our TIGERcombined model 
at scale. We predicted eight high-efficacy gRNAs for 5,166 genes and 
performed proliferation screens in two different cell lines (HEK293FT 
and HAP1; Fig. 3f and Supplementary Data 5–8). We noticed high con-
sistency between gRNAs that target the same gene (Fig. 3g). Extending 
this analysis, we found that TIGERcombined correctly predicted active 
gRNAs (defined as log2(FC) < −1) in the HEK293 and HAP1 screens for 
91% and 95%, respectively, of the chosen gRNAs (Fig. 3h), highlighting 
the robustness and generalizability of our on-target model across cell 
lines and thousands of unseen genes.

Having confirmed robust targeting, we next assessed whether 
RNA-targeting RfxCas13d CRISPR screens could discriminate essen-
tial genes from nonessential genes. Among the 5,166 target genes 
included in these screens, we embedded a set of 1,082 common essen-
tial genes and 458 nonessential genes based on DepMap classifications 
(Methods). We found that we could successfully discriminate essential 
genes against control genes using gRNA efficacy predictions using the  
TIGERcombined model (Fig. 3i, AUROC 0.86 and 0.95 in HEK293FT and 
HAP1 cells). Gene depletion in HAP1 cells was generally more pro-
nounced compared to that in HEK293FT cells (Supplementary Fig. 5a).

Previous reports have suggested that cell fitness (and there-
fore cell proliferation) may be affected by nonspecific collateral  
RfxCas13d activity as a function of target gene expression40,41. However, 
it is unclear if the collateral activity affects cell fitness in a controlled 
setting with single integration of RfxCas13d effector protein and gRNA 
expression cassettes. To explore this relationship, we analyzed gene 
dropout across a large span of expression levels (1 to >1,000 transcripts 
per million (TPM)). For common essential genes, we also observed a 
known dependency of gene expression and gene depletion42,43, which 
was much reduced for the nonessential gene group (Supplementary 
Fig. 5b). For nonessential genes, we noticed no evidence of drop-
out as a function of gene expression in HEK293FT. For the haploid 
HAP1 cells, we noticed that a relationship between gene expression 
and control gene depletion was mainly driven by genes expressed 
>100 TPM. It is worth noting that only ~5% of 19,177 protein-coding 
genes are expressed at levels above 100 TPM in human cell lines 
(n = 1,377 Cancer Cell Line Encyclopedia cell lines), and the majority 
of these genes are classified as common essential genes in DepMap. 
Nonspecific collateral activity may only affect a small subset (<6%) of 
very highly expressed genes (>100 TPM) in sensitive cells with single- 
integration Cas13d screens. Despite this, we found that HAP1 cells 
showed higher sensitivity (AUROC) for the identification of essential  
genes (Fig. 3i).

Taken together, we find that TIGERcombined gRNA predictions are 
robust and generalizable across thousands of genes in multiple cell 
lines and that undesired viability defects based on target gene expres-
sion may be cell-type-dependent and usually only occur for a subset of 
highly expressed genes.
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Off-target prediction and gene knockdown titration
Although multiple groups have developed predictive models of 
on-target Cas13d activity, there has been comparatively less work on 
off-target activity and no predictive models exist for Cas13d. Similarly, 
for CRISPR-Cas9 gRNAs, nearly all deep learning approaches focus on 
predicting on-activity and do not include separate inputs for gRNA and 
target site sequences26,29–36,44–46. TIGER’s architecture easily accom-
modates mismatches between target and gRNA (Fig. 3a). In addition 
to the ability to predict on-target efficacy for PM gRNA when trained 
on PM and mismatched data (TIGERcombined), we sought to extend the 

usability of TIGER to enable precise off-target predictions via target 
site-level CV (Supplementary Note). This validation strategy avoids PM 
and SM guides for the same target appearing in training and validation.

When predicting changes in abundance for mismatch variant 
gRNAs, we find that the correlation between TIGER’s predictions and 
observed values decreases as the number of mismatches and the dis-
tance between them increases (Fig. 4a and Supplementary Fig. 6a). We 
wondered whether this might be due in part to the variability in effect 
size between different PM gRNAs (Fig. 2d,e). To test this, we instead 
measured the difference in the predicted gRNA abundance between 
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Fig. 4 | Training TIGER using gRNAs with mismatches enables prediction of 
off-target activity and transcript modulation using gRNAs with SMs. a, The 
correlation between observed and TIGER-predicted gRNA abundance by gRNA 
design type. b, The correlation between change in observed and TIGER-predicted 
gRNA abundance by gRNA design type. The change in gRNA abundance is 
defined as the difference in log2(FC) for a particular gRNA with mismatches and 
its cognate PM gRNA. c, ROC curves for each gRNA design type from tenfold 
target-site CV. d, Aggregate correlation (Pearson and Spearman) and aggregated 
areas under the ROC and precision–recall curves for each gRNA design type from 
tenfold target-site CV. Values denote aggregate performance over CV folds and 
error bars denote ±2 s.e. e, A framework for using gRNA with SMs to modulate 
Cas13 targeting activity. f, Correlation of predicted and observed relative activity 
ratio for all 23 SM gRNAs per highly active (log2(FC) < −1) target sites (n = 324 

target sites). g, Confusion matrix for efficiency ratios between a gRNA with 
an SM to the intended target RNA binned by quintiles for all active target sites 
(FDR < 0.01; n = 393 target sites with n = 9,032 SM gRNA variants). Each column 
is normalized. h, Design of pooled CRISPR–Cas13d screen for TIGERcombined gRNA 
predictions targeting 1,082 common essential genes with four high-efficacy 
PM gRNAs, and ten SM gRNAs with varying relative activity. i, Correlation of 
predicted and observed relative activity ratio for all ten SM gRNAs per highly 
active PM gRNA (n = 3,161 gRNAs with log2(FC) < −1). j, Confusion matrix for 
efficiency ratios between a gRNA with an SM to the intended target RNA binned 
by quintiles (n = 30,582 SM gRNA variants). Each column is normalized. For 
boxplots in f and i, the boxes indicate the median and IQRs with whiskers 
indicating 1.5× IQR.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01830-8

variant gRNAs and their cognate PM gRNA (Fig. 4b and Supplementary 
Fig. 6b). Here we find that the correlation no longer decreases with 
increasing mismatches, suggesting that when we explicitly account 
for the variability in PM gRNAs, TIGER is able to predict the effect of 
different mismatches. As we did for PM gRNAs, we computed four 
performance metrics for each category of mismatch variant gRNAs 
(Fig. 4c,d and Supplementary Fig. 6c). This time, however, we com-
pared our TIGERcombined model (trained on PM and mismatches) to a 
TIGERoff-target model (trained on mismatched gRNAs only). As is the case 
with on-target prediction, we find that the combined model is superior 
(Supplementary Fig. 6d). Using an independent pooled screen (surface 
protein expression)7, which also contains gRNAs with SM and double 
mismatch (DM) variants, we further confirmed our model’s ability to 
predict gRNA efficacy after being trained on the survival screen dataset 
(Supplementary Fig. 6e).

Given that TIGER can predict a PM gRNA’s efficacy and how this 
efficacy changes when mismatches are introduced, we can both iden-
tify mismatched target sites with off-target activity and engineer mis-
matches to precisely reduce gRNA efficacy and titer knockdown (Fig. 4e).  
To this end, we defined the 'efficacy ratio' as the ratio of the FC of an 
SM gRNA to the FC of its PM cognate gRNA. Using target site-level CV, 
we compared predicted and observed relative gRNA activity for the 23 
SM gRNA variants designed for each individual target site. We found 
a high correlation between predicted and observed relative activities 
(median, r = 0.76; median, ρ = 0.74, n = 324 active target sites with PM 
log2(FC) < −1; Fig. 4f). We binned all observed and predicted efficacy 
ratios for SM gRNAs with active cognate PM gRNAs into quintiles to 
compute a confusion matrix (Fig. 4g and Supplementary Data 9). For 
each quintile, we found that SM gRNAs were most often correctly classi-
fied. In particular, TIGER achieves the best performance at the extremes 
(0–20 and 80–100) and can determine those SMs with high accuracy 
that minimally impact or maximally disrupt activity.

Finally, we sought to test the generalizability of our TIGER 
off-target model for gene essentiality titration across thousands of 
genes and target sites. Specifically, we predicted four high-efficacy 
gRNAs for 1,082 common essential genes and designed ten gRNA vari-
ants with single nucleotide mismatches for each PM gRNA target site 
(n = 47,608 PM and SM gRNAs). Using a pooled proliferation screen in a 
different cell line (HAP1), we measured relative activity loss compared 
to the cognate PM gRNA via depletion (Fig. 4h and Supplementary Data 
10–12). We found a high correlation between predicted and observed 
relative activities (median, r = 0.83; median, ρ = 0.81, n = 3,161 target 
sites with cognate PM log2(FC) < −1; Fig. 4i, Supplementary Fig. 6f 
and Supplementary Data 13). In this independent screen, we found 
strong agreement across quintiles (Fig. 4j). This suggests that our 
model is able to predict gRNA variants with a defined relative activ-
ity with high accuracy for unseen target sites and generalizes across  
cell lines.

Discussion
In this study, we generated a large Cas13d dataset that measures the 
activity of ~200,000 gRNAs across multiple human cell lines and per-
formed a comprehensive assessment of Cas13d gRNA on-target and 
off-target activity. Specifically, we sought to characterize PM gRNA 
activity determinants and gRNAs permutations across a large set of 
nucleotide mismatches and indels relative to their cognate target 
sites. We found that a gRNA’s ability to trigger Cas13d nuclease activity 
depends on the permutation position within the gRNA, the nucleotide 
identity and the target site context. Previous studies have not character-
ized certain gRNA permutations such as indels. Our analysis shows that 
mismatches are generally better tolerated compared to more disruptive 
indels in gRNA or target RNA sequences. Using this unique dataset, we 
trained the TIGER CNN model for on-target activity and off-target activ-
ity. We find that TIGER has strong performance for Cas13d on-target 
activity compared to existing Cas13d on-target models including those 

with larger training sets. Of relevance for understanding impacts across 
the transcriptome, our TIGER model is a compelling attempt to under-
stand and model Cas13d off-target binding and nuclease activation. 
Finally, we apply our TIGER platform to develop an approach for precise 
and massively parallel interrogation of gene dosage.

New CRISPR technologies hold great promise for a new gener-
ation of therapeutic agents. Among these, RNA-targeting CRISPR 
proteins have recently been shown to provide therapeutic values in 
disease models12–17. High precision is key to the safety of therapeutic 
RNA-targeting CRISPR agents. We believe that TIGER predictions will 
enable ranking and ultimately avoidance of undesired off-target bind-
ing sites and nuclease activation, and further spur the development of 
RNA-targeting therapeutics. The ability to distinguish between closely 
related target sites may enable the targeting of allelic variants and other 
nearly undruggable targets like fusion gene products47.

Furthermore, our model can be used for precise modulation of 
target RNA knockdown at scale. Specifically, our study suggests that 
RNA-targeting CRISPR perturbations can be used to systematically 
study the effect of gene dosage at the RNA levels. This platform funda-
mentally extends on previous microRNA-based platforms25 that on the 
one hand, a lack of scalability due to laborious target site engineering 
and, on the other hand, a lack of target-specificity if engineered microR-
NAs are provided exogenously due to their short target site recognition 
sequence. In addition, tuning of gene expression at the RNA level may 
be beneficial compared to modulation at the DNA level, as gene expres-
sion initiation is inherently stochastic48 and biological systems have 
evolved in a way to fine-tune gene expression post-transcriptionally49,50. 
Other DNA-targeting (for example, dCas9-based) CRISPR approaches 
have been proposed for gene expression modulation26. However, it 
is unclear if epigenetic effector domains (for example, KRAB) fused 
dCas9 proteins are well suited as they may act more in a binary on-off 
fashion27,51, and may lack precision for closely spaced genes due to the 
spreading of chromatin modifications and DNA methylation52. Here 
we provide precise measurements for the titration of 1,082 essential 
genes across thousands of target sites confirming the TIGER model’s 
prediction accuracy. While we observe a high degree of concord-
ance between measured essentiality and predicted gRNA efficacy, 
our methods, similar to previous CRISPR-based methods26, may be 
limited by the assumption that RNA knockdown and gene essential-
ity scale linearly. Therefore, future experiments are needed to spe-
cifically evaluate differences between genes with a linear relationship 
between expression and essentiality and those that require threshold  
expression levels.

Taken together, we believe that the ability to model the effect of 
nucleotide mismatches not only allows for an enhanced understanding 
of gRNA on-target specificity and off-target avoidance but also enables 
precise target knockdown to a defined degree that will be useful for 
diverse transcriptome engineering applications.
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Methods
Cell culture
Doxycycline-inducible RfxCas13d-NLS HEK293FT and HAP1 cells 
were generated via lentiviral transgenesis (Addgene,138149)7. RfxC-
as13d-NLS HEK293FT and HAP1 cells were maintained at 37 °C with 5% 
carbon dioxide in D10 media or I10 media, respectively. Dulbecco’s 
Modified Eagle Medium with high glucose and stabilized l-glutamine 
(Caisson, DML23) or Iscove’s Modified Dulbecco’s Medium (Caisson, 
IML02) supplemented with 10% fetal bovine serum (Serum Plus II; 
Sigma-Aldrich, 14009C) and 5 µg ml−1 Blasticidin S (Thermo Fisher 
Scientific, A1113903).

Pooled lentiviral production and screening
Lentivirus was produced via transfection of library plasmid pool 
and appropriate packaging plasmids (psPAX2—Addgene, 12260; 
pMD2.G—Addgene, 12259) using linear polyethylenimine MW25000 
(Polysciences, 23966). We seeded ten million HEK293FT cells per 10 cm 
dish and transfected with 60 µl polyethylenimine, 9.2 µg plasmid pool, 
6.4 µg psPAX2 and 4.4 µg pMD2.G. At 3 d post-transfection, viral super-
natant was collected and passed through a 0.45-µm filter and stored at 
−80 °C until further use.

Doxycycline-inducible RfxCas13d-NLS HEK293FT and HAP1 cells 
were transduced with the pooled library lentivirus in separate infection 
replicates, ensuring at least 1,000× guide representation in the selected 
cell pool per infection replicate using spinfection. We performed three 
or four independent infection replicate screens/experiments. After 
24 h, cells were selected with 1 µg ml−1 puromycin (Thermo Fisher 
Scientific; A1113803), resulting in ~30% cell survival. Puromycin selec-
tion was performed ~48 h to 72 h after the addition of puromycin. 
Assuming independent infection events (Poisson), we determined 
that ~83% of surviving cells received a single sgRNA construct57. RfxC-
as13d expression was induced by the addition of 1 µg ml−1 doxycycline 
(Sigma-Aldrich, D9891) upon complete puromycin selection at the time 
of input sample collection (day 0). Cells were passed every 2–3 d (main-
taining full representation) and supplemented with fresh doxycycline. 
For our initial screen, we collected genomic DNA (gDNA; at least 1,000 
cells per construct representation) from each sample on day 0, day 15 
and day 30. For the TIGER on-target and titration screens, we collected 
samples on day 0, day 7 and day 14.

Screen library design and pooled oligo cloning
For this study, we designed the following three CRISPR–Cas13d gRNA 
libraries: (1) a total of 120,000 gRNA libraries tiling 16 essential genes 
with PM, mismatch and indel gRNAs (Supplementary Data 1 and 2), 
(2) a total of 42,326 gRNA on-target libraries were designed using our 
TIGERcombined model targeting 5,166 target genes with eight PM gRNAs 
(Supplementary Data 5) and (3) a total of 48,608 gRNA titration libraries 
targeting 1,082 essential genes with four PMs and ten SM gRNAs (Sup-
plementary Data 10). For each target gene, we designed gRNAs against 
the most abundant isoform using publicly available transcript isoform 
quantifications from the Cancer Cell Line Encyclopedia for HEK-TE 
quantification (https://sites.broadinstitute.org/ccle/).

For the first library, we selected 16 genes (Supplementary Data 1)  
previously found to be essential using RNA-targeting CRISPR screens7. 
We predicted gRNA efficacies for all possible 23-mer gRNAs using 
our RFon model with minimal constraints (T-homopolymer < 4, 
V-homopolymer < 5)7. We only considered gRNAs falling within the 
coding region boundaries, which have been shown to be the most active 
previously7. For ten genes, we selected, if possible, ~100 evenly spaced 
PM gRNAs for each prediction quartile to a total of 400 gRNAs. For six 
genes, we selected 1,000 PM gRNAs in the same way across all predic-
tion quartiles. For one of the six genes, we selected 100 PM gRNAs in 
the most effective quartiles Q3 (30 gRNAs) and Q4 (70 gRNAs) and 
designed 181 gRNA variants per parental reference PM gRNA. These 
181 variant gRNAs included 23 SM gRNAs, 50 random DM gRNAs, eight 

consecutive DMs, 50 RTMs, eight consecutive TMs, eight SDs, eight ran-
dom double nucleotide deletions (DDs), five consecutive double dele-
tions (CDs), eight SIs, eight random double nucleotide insertions (DIs) 
and five consecutive double insertions (CIs). For nucleotide substitu-
tion or insertions, we chose a random base avoiding self-substitutions 
and terminal thymidine/uridine (T/U) bases. We filtered PM gRNAs 
and derivatives to not end with a T/U at position 23, as it would be 
interpreted as the start of the Pol III-terminator sequence directly 
downstream of the gRNAs and would lead to gRNAs truncations. For SM 
gRNA, we randomly sampled one nucleotide substitution per position 
to evenly cover all 23 positions. For all other categories, we randomly 
sampled from all possible variants. In total, we designed 120,000 gRNAs 
(Supplementary Data 2, 10,000 PM gRNAs, 108,600 PM gRNA variants 
and 1,400 NT control guides with more than three mismatches to the 
hg19 transcriptome).

For the second and third libraries, we predicted PM and SM gRNA 
efficacies using our TIGERcombined model. In total, we designed gRNAs for 
5,166 genes. We included several (not mutually exclusive) gene groups 
as follows: 1,082 common essential genes (DepMap release 08-2021; 
DepMap score < −1 in ≥500 cell lines or scored in all five screens in  
ref. 58), 1,052 other genes (DepMap score < −0.5 in ≥100 cell lines or 
scored in at least three screens in ref. 58), 1,477 RNA binding protein 
genes59, 1,706 transcription factor genes60 and 458 control genes (Dep-
Map score between −0.1 and +0.1 in ≥700 cell lines, spanning a wide 
range of gene expression values from 1 to >1,000 TPM). For all 5,166 tar-
get genes, we designed eight top PM gRNAs targeting the genes coding 
region. For the 1,082 essential genes, we designed four top PM gRNAs for 
ten SM gRNA variants, randomly sampling across the 69 possible vari-
ants per PM gRNA with a roughly even spread of predicted low-activity to 
high-activity SM gRNA variants. We added 1,000 NT control guides with 
more than three mismatches to the hg19 transcriptome. On-target and 
titration libraries were designed together, padded by library-specific 
priming sites enabling separate PCR amplification and plasmid  
library cloning.

The pooled crRNA libraries were synthesized as single-stranded 
oligonucleotides (Twist Biosciences) and then PCR amplified in one 
reaction per 10,000 gRNAs with a 50-µl reaction volume—0.5 µl Q5 
polymerase (NEB), 10 µl 5× reaction buffer, 2 µl oligo pool (1 ng µl−1), 
2.5 µl of each forward and reverse primer (10 µM), 2.5 µl dNTPs (10 mM) 
and 30 µl water. PCR conditions were 98 °C/30 s, 8× or 9× (98 °C/10 s, 
63° C/10 s and 72 °C/15 s) and 72 °C/3 min. The PCR product was either 
gel-purified or purified using the Zymo Clean and Concentrator 25 kit 
and then Gibson-cloned into BsmBI-digested pLentiRfxGuide-Puro 
(Addgene, 138151) using eight Gibson reactions with a 20-µl reaction 
volume each time—500 ng digested plasmid (0.088 pmol), 123.15 ng 
purified oligo pool (1.3245 pmol, 15:1 molar ratio), 10 µl 2× Gibson 
Assembly Master Mix (NEB), incubated for 1 h at 50 °C. Each gRNA was 
represented by >200 colonies. Complete library representation with 
minimal bias (90th percentile/10th percentile gRNA read ratios of ~2:5 
for all libraries) was verified by Illumina sequencing (MiSeq).

Screen readout and read analysis
We used a two-step PCR protocol (PCR1 and PCR2) to amplify the gRNA 
cassette for Illumina sequencing from gDNA. The gDNA was extracted 
from screen cells using the following protocol57: for 100 million cells, 
12 ml of NK lysis buffer (50 mM Tris, 50 mM ethylenediaminetetraacetic 
acid, 1% SDS and pH 8) was used for cell lysis. Once cells were resus-
pended, 60 µl of 20 mg ml−1 Proteinase K (Qiagen) was added and 
the sample was incubated at 55 °C overnight. The next day, 60 µl of 
20 mg ml−1 RNase A (Qiagen) was added and mixed, and samples were 
incubated at 37 °C for 30 min. Then, 4 ml of prechilled 7.5 M ammonium 
acetate was added, and samples were vortexed and spun at 4,000g for 
10 min. The supernatant was placed in a new tube, mixed well with 12 ml 
isopropanol and spun at 4,000g for 10 min. DNA pellets were washed 
with 12 ml of 70% ethanol, spun and dried, and pellets were resuspended 
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with 0.2× TE buffer (Sigma-Aldrich). In addition, we also generated 
linearized plasmid library input and diluted it down to mimic similar 
copy number conditions as the gDNA samples.

For the PCR1 reaction, we used 960 µg (screen 1) or 880 µg (screens 
2 and 3) gDNA for each sample. For each sample, we performed 96 
(screen 1) or 88 (screens 2 and 3) 100 µl PCR1 reactions with a 100-µl 
reaction volume—10 µl 10× Taq buffer, 0.02 U µl−1 Taq-B enzyme (Enzy-
matics, P7250L), 0.2 mM dNTPs, 0.2 µM forward and reverse primers 
and 100 ng gDNA per µl; thermocycling conditions for PCR1 were 
94 °C/30 s, 10× (screen 1) or 18× (screens 2 and 3; 94 °C/10 s, 55 °C/30 s, 
68 °C/45 s) and 68 °C/3 min. Because our screen 1 library contained a 
large number of gRNAs with a hamming distance of one to one another, 
we decided to only perform ten cycles of PCR1. For each sample, all 
PCR1 products were pooled and mixed.

For each sample, we performed 24 (screen 1) or 6 (screens 2 and 
3) PCR2 reactions with a 100-µl reaction volume—20 µl 5× Q5 buffer 
(NEB), 0.01 U µl−1 Q5 enzyme, 20 µl PCR1 product, 0.2 mM dNTPs and 
0.4 µM forward and reverse PCR2 primers in 100 µl. Thermocycling 
conditions for PCR2 were 98 °C/30 s, 18× (screen 1) or 8× (screens 2 and 
3; 98 °C/10 s, 63 °C/30 s and 72 °C/45 s) and 72 °C/5 min. For screen 1, we 
performed an additional PCR2 on the linearized plasmid pool sample 
with either Q5 or Taq-B polymerase. We found raw counts to be highly 
correlated with no obvious influence due to the choice of polymerase. 
PCR primers can be found in Supplementary Data 14.

For each sample, PCR2 products were pooled, followed by normali-
zation (gel-based band densitometry quantification), before combin-
ing equal amount of uniquely barcoded samples. The pooled product 
was then purified using SPRI beads. First, we performed a 0.6× vol/vol 
SPRI to remove gDNA carryover, followed by the addition of a 0.3× vol/
vol SPRI (0.6 + 0.3 = 0.9× final) to the supernatant to purify the ~260 bp 
PCR product. Oligonucleotides can be found in Supplementary Data 
14. The final amplicons were sequenced on Illumina NextSeq 500—II 
MidOutput 1 × 150 v2.5 (screen 1) and Illumina NextSeq 500—II High-
Output 1 × 150 v2.5 (screens 2 and 3).

Reads were first demultiplexed based on Illumina i7 barcodes pre-
sent in PCR2 reverse primers using bcl2fastq and then by their custom 
in-read 5′ barcode allowing for one mismatch. They were trimmed to 
the expected gRNA length by searching for known anchor sequences 
relative to the guide sequence. They were collapsed (FASTX-Toolkit) to 
count perfect duplicates followed by exact string-match intersection 
with the reference to retain only perfectly matching and unique align-
ments. The raw gRNA counts (Supplementary Data 3, 6 and 11) were nor-
malized using a median of ratio method61 and then batch-corrected for 
biological replicates using combat implemented in the SVA R package62. 
Nonreproducible technical outliers were removed by flagging indi-
vidual values with high variance within replicate samples of each time 
point (D0, D15 and D30 for screen 1 and D0, D7 and D14 for screens 2 and 
3). These outlier counts are a common contaminant in early-passage 
input samples due to plasmid carryover from virus production in the 
viral supernatant used for infection63. Specifically, we calculated the 
log2-transformed variance across all samples for each gRNA. Then, 
we calculated the variance within each time point across all replicate 
samples and flagged individual gRNA counts within the upper 0.6% 
variance percentile (for example, cutoff = −1.366 for screen 1). We only 
flagged individual counts if those were present in the upper half of the 
count distribution to avoid masking variance within depleting gRNAs. 
Because we had three replicates, we replaced the flagged count with NA 
but kept the other two unflagged replicates. For screen 1, we removed 
154 gRNAs due to all filtering steps (28 gRNAs were not detected; 126 
gRNAs were only lowly represented in the plasmid library with less than 
60 normalized counts).

gRNA enrichments (Supplementary Data 4, 7 and 12) were cal-
culated by building the count ratios between a time point and the 
corresponding input (day 0) sample for each replicate followed by 
log2-transformation (log2(FC)). Consistency between replicates was 

estimated using Pearson correlations and robust rank aggregation64. 
For data representation and modeling, we used the mean log2(FC) 
across replicates. Delta log2(FC) for mismatching guides was calculated 
by subtracting the log2(FC) of the permuted gRNA from the PM refer-
ence guide. For data representations in Figs. 1 and 2, we normalized the 
observed log2(FC) guide values in the following way: for each gene D in 
the dataset, we computed the upper and lower quartiles of the guide 
log2(FC) (UQD and LQD, respectively) as well as the corresponding 
quartiles for the log2(FC) among all datasets pooled together (UQP and 
LQP). We then updated each FC x as follows:

̂x = ( x − LQD
(UQD − LQD)

(UQP − LQP) + LQP)

Gene essentiality normalization and determination of active 
guides
Given that essentiality varies across the 16 genes in our first pooled 
library (that is, some genes are more essential than others), we experi-
mented with different per-gene normalization approaches (including 
no normalization) to equalize survival effects across all genes in our 
survival screen before data modeling. All of our considered transfor-
mations are location–scale transformations, where the location and 
scale were derived separately for each gene. Data were transformed 
as follows: (x – location)/scale. We found that the best generalization 
performance was obtained using median log2(FC) as the location and 
the distance between the 10th and 90th percentiles as the scale.

We used the distribution of NT gRNAs to determine which gRNAs 
targeting essential genes to consider as being active. We selected 
the most depleted 1% of NT gRNAs as the threshold for activity after 
testing for normality of the NT gRNA distribution (Lilliefors test, 
P < 0.001). This threshold corresponds to a log2(FC) < −0.50 for screen 
1 (HEK293FT) as well as log2(FC) < −0.44 and log2(FC) < −0.29 for screen 
2 in HEK293FT and HAP1, respectively.

Cell surface marker flow cytometry pooled screens
For certain analyses (for example, entire dataset holdout), we used a 
set of published pooled gene-tiling Cas13d screens using flow cytom-
etry of cell surface markers from our previous study7. In these screens, 
library-transduced cells were sorted based on the expression of cell sur-
face markers (CD46, CD55 or CD71). Specifically, we used the processed 
count data (available in Supplementary Data 8; ref. 7) for the CD46, 
CD55 and CD71 tiling screens and calculated gRNA FC by computing the 
count ratios between sorted bins (high versus low) for each replicate 
followed by log2-transformation (log2(FC)).

Predicting RNA secondary structures and RNA–RNA 
hybridization energies
crRNA secondary structure and MFEs were derived using RNAfold 
(--gquad) on the full-length crRNA (DR + guide) sequence65. Target 
RNA-pairing probability (accessibility) was calculated using RNAplfold 
(-L 40 -W 80 -u 50) as described previously7. These parameters specify 
a moving window of 80 nucleotides and a maximal base pairing span 
of up to 40 nucleotides. We chose these parameters because previous 
studies3,66,67 both in the context of Cas13 and RNA interference have 
found optimal performance for a local window around the target site.

We performed a grid search calculating the RNA accessibility for 
each target nucleotide in a window of minus 20 bases downstream of 
the target site to plus 20 bases upstream of the target site assessing 
the unpaired probability of each nucleotide over 1–50 bases for all 
perfectly matching guides. Then, we calculated the Pearson correla-
tion coefficient between the log10-transformed unpaired probabilities 
and the observed gRNA log2(FC) for each point and window relative to 
the gRNA. We selected four centers of high correlation to feed into the 
model. Target RNA accessibility features are (1) position −11 upstream 
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to the first spacer nucleotide with a width of 23 nt; (2) position −11 with 
a width of 4 nt; (3) position −19 with a width of 4 nt and (4) position −25 
with a width of 4 nt.

RNA–RNA hybridization between the gRNA (PM and gRNA 
with nucleotide substitutions but not for indel gRNAs) and its tar-
get site was calculated using RNAhybrid (-s -c)68. We calculated the 
RNA-hybridization MFE for each gRNA nucleotide position p over the 
distance d to position p + d with its cognate target sequence. All meas-
ures were either directly correlated with the observed gRNA log2(FC) 
or using partial correlation to account for the crRNA folding MFE. In 
each case, we computed the Pearson correlation. We selected three 
centers of high correlation to feed into the model. Hybridization MFE 
features are (1) position p = 1 and d = 23; (2) position p = 3 and d = 12; 
and (3) position p = 15 and d = 9.

Assessing target RNA context
To assess the target RNA context, we calculated the nucleotide prob-
ability at each position (p) over a window (w) of 1–50 nucleotides cen-
tered around the position of interest (for example, p = −18 with w = 11 
summarizes the nucleotide content in a window from −23 to −13 with 
+1 being the first base of the crRNA). We evaluated p for all positions 
within 75 nucleotides upstream and downstream of the gRNA. The 
nucleotide context of each point was then correlated with the observed 
log2(FC) crRNA enrichments for all PM crRNAs, either directly or using 
partial correlation accounting for crRNA folding MFE. In each case, 
we used the Pearson correlation. We used the same positions p and 
window sizes that have been used before in RFon

7. These RNA nucleo-
tide context features were only used in the RFon model but not in the  
CNN models.

Convolutional neural network for deep learning
The sequence input to the CNN consists of 23 nt target and gRNA 
sequences with 2 nt of upstream and downstream target context. 
Initially, the input is processed with two consecutive convolution 
layers each with 32 4 × 4 kernels followed by a rectified linear unit. At 
the next stage, we perform max pooling with a pooling size of two. 
We flattened the resulting 32 channels of 16 × 4 learned feature rep-
resentations to a vector of length 2,048 to which we concatenate any 
nonsequence features. To regularize, we use a 25% dropout before our 
dense layers, which consist of three layers with 128, 32 and 1 neurons, 
respectively. Between each dense layer, we use a 10% dropout. The first 
two dense (hidden) layers apply sigmoid activations. The single output 
neuron does not apply any activation function. This design is similar 
to previous deep learning models in computer vision38 and sequence  
analysis26.

We use a log hyperbolic cosine (log-cosh) loss function, which is 
similar to an L1 loss but is continuously differentiable. We optimize our 
models with Adam (adaptive moment estimation), an adaptive stochas-
tic optimization algorithm that requires only first-order gradients69, 
with a learning rate of 0.001. We employ early stopping with patience 
of 100 epochs and restore model parameters of the best epoch. We 
implemented our models using TensorFlow via the Docker image 
tensorflow: 2.11.0 with GPU support. In addition, our code imports 
the following Python packages: biopython (v1.80), pandas (v1.5.2), 
tensorflow-probability (v0.19.0), matplotlib (v3.6.1), seaborn (v0.12.1), 
shap (v0.41.0), statsmodels (v0.12.2) and sklearn.

Cross-validation across genes, target sites, gRNAs and 
datasets
We consider the following three CV approaches: gene level, target level 
and individual gRNAs. For gene-level CV, we create 16 folds where each 
fold contains all (gRNA and target) tuples specific to that gene. This CV 
approach promotes transcriptome-wide generalization by holding out 
entire genes (and all of the corresponding target sites and gRNAs for 
that gene). The second approach (target-level CV) randomly divides 

target sites into ten, nonoverlapping folds. Holding out a target site 
places all PM and mismatched gRNAs designed for that target site 
into the holdout set, ensuring that a target sequence never appears 
both in training and validation sets. This is important as active PM and 
SM gRNAs for the same target sequence can have similar activity. The 
third approach (gRNA-level CV) holds out individual gRNAs; notably, 
related gRNAs such as mismatch gRNAs (for a particular PM gRNA in the 
holdout group) may still be included in the training set. As expected, 
we observe better performance with gRNA-level CV than target- or 
gene-level CV.

In some experiments, we train on the 120,000 gRNA library and 
then test on a separately collected pooled screen—flow cytometry of 
cell surface proteins from three genes (entire dataset holdout)7. For the 
entire dataset holdout, we used the log2-transformed gRNA depletion 
in the fluorophore-low bin divided by the fluorophore-high bin. Supple-
mentary Note contains a formal description of all of these CV strategies. 
All CV folds used in the study are presented in Supplementary Data 2.

Comparison with linear regression, random forest and 
recurrent neural networks
To quantify the RFon performance for predicting PM gRNA efficacy on 
the essentiality screen, we used the same 16 gene holdouts described 
above and iteratively retrained the model with its previously described 
architecture7 on 15 genes to predict the 16th gene. In addition, we 
retrained RFon on the entire essentiality dataset to evaluate its perfor-
mance on the phenotype selection data (flow cytometry). For the recent 
Cas13 deep learning models8,9, we uploaded each of the 16 transcripts 
for our targeted essential genes to their respective web portals to 
generate predictions for all potential target sites along the transcript 
(1 nt tiling). We only compute performance at target sites for which 
we measured gRNA activity. Cheng et al. transformed FC data via a 
parameterized sigmoid function9. We exactly applied this transfor-
mation to our FCs before computing their performance metrics. Wei 
et al. generated predictions for 30 nt spacers8. When computing their 
performance, we use the first 23 nt of their 30 nt spacer sequence to 
match their predictions to our 23 nt gRNA sequences.

We also designed a BiGRU70 model as an alternative deep learning 
approach that is based on recurrent units instead of convolution units. 
We designed the BiGRU architecture to closely mimic the dense layers 
of TIGER. The BiGRU model uses a convolution kernel of length one to 
learn a 32-dimensional embedding from the one-hot-encoded target 
and gRNA sequences (16 unique 32-dimensional embeddings for each 
possible guide-target pair). This embedding feeds a BiGRU layer, which 
outputs a 32-dimensional representation for each sequence position. 
We concatenate the 32-dimensional outputs for both directions and all 
sequence positions and, thereafter, flatten it to a vector of length 64× 
sequence length and concatenate nonsequence features. To regularize, 
we apply a 25% dropout on this vector before feeding it to our dense 
layers, which consist of three layers with 128, 32 and 1 neurons. Between 
each dense layer, we use a 10% dropout. The first two dense (hidden) 
layers apply sigmoid activations. The single output neuron does not 
apply any activation function.

For linear regression, we used one-hot-encoded sequences (flat-
tened into a vector) and concatenate nonsequence features to the 
same vector.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data generated in this study have been deposited at NCBI Gene 
Expression Omnibus (GEO) with the accession number GSE232228. 
Flow cytometry screen data from ref. 7 is available under the accession 
number GSE142675.

http://www.nature.com/naturebiotechnology
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Code availability
Code to run Cas13d on-target and off-target TIGER models has 
been deposited on Github (https://github.com/daklab/tiger). A 
web-accessible version of TIGER is available at https://tiger.nygen-
ome.org/.
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