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Cas13d-mediated isoform-specific RNA
knockdown with a unified computational
and experimental toolbox

Megan D. Schertzer 1,2 , Andrew Stirn1,2,10, Keren Isaev1,3,10, Laura Pereira1,
Stella H. Park 1,4, Anjali Das1,2, Aline Réal1, Erin D. Jeffery 5, Claire Harbison1,
Hans-Hermann Wessels1,6, Gloria M. Sheynkman 5,7,8, Neville E. Sanjana1,6 &
David A. Knowles 1,2,3,9

Pre- and post-transcriptional mechanisms, including alternative promoters,
termination signals, and splicing, play essential roles in diversifying protein
output by generatingdistinct RNAandprotein isoforms. Twomajor challenges
in characterizing the cellular function of alternative isoforms are the lack of
experimental methods to specifically and efficiently modulate isoform
expression and computational tools for complex experimental design and
analysis. To address these gaps, we develop andmethodically test an isoform-
specific knockdown strategy which pairs the RNA-targeting CRISPR/Cas13d
systemwith guide RNAs that span exon-exon junctions. In parallel, we provide
computational tools for experimental design and analysis. In this study, we
demonstrate that junction-targeting achieves robust and isoform-specific RNA
knockdown across diverse alternative isoform events, genes, and cell types.

The majority of human genes generate alternative RNA and protein
isoforms through mechanisms such as alternative splicing (AS), alter-
native transcription initiation, and alternative polyadenylation1–3. In
some cases, alternative isoforms regulate gene dosage through
nonsense-mediated decay, translation efficiency, and stability4,5. In
others, RNA isoforms are translated into distinct proteins that can vary
in localization, protein-protein interactions, and nucleic acid
binding6–8. Alternative transcriptional and splicing events are dynamic
throughout development and differentiation, particularly in brain and
muscle tissues1,2,9,10.

Genetic variants that affect AS can have significant consequences.
Cis-acting variants within a single gene can be sufficient to drive dis-
ease, while trans-acting variants in RNA binding proteins can disrupt
entire splicing networks11–13. Splicing quantitative trait locus analysis
has demonstrated that a substantial proportion of complex disease

heritability is mediated through genetic effects on AS14–18. Widespread
splicing alterations are also observed across cancers, with ~30% more
AS events in cancer cells relative to normal cells3,19,20.

Recent advances in long read RNA-sequencing have dramatically
expanded the catalog of annotated transcripts. Over the pastfive years
alone, GENCODE added ~55,000 transcripts, bringing the total to
~250,00021. Despite this, the functional roles of most isoforms remain
unknown–highlighting the need for both experimental and computa-
tional methods to interrogate isoform-specific functions.

While gene-level perturbation is routine, isoform-level functional
studies remain challenging. CRISPR-basedDNA-targeting systemshave
been used to perturb alternative transcription and splicing events,
including cassette exon deletion22,23, promoter inhibition24, and splice
site editing25. RNA-based methods such as RNAi26,27 and antisense
oligonucleotides28 primarily target cassette exons. Most recently,
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catalytically inactive RNA-targeting CRISPRs have been directed to
splicing regulatory regions to alter pre-mRNA processing29–32. How-
ever, these strategies typically focus on a single event type, often
cassette exons, and require significant computational work to con-
fidently identify expressed isoforms and to link a transcriptional or
splicing event with its corresponding isoform(s).

Here, to address these limitations, we introduce and systematically
evaluate a versatile platform for isoform-specific knockdown that pairs
the CRISPR/Cas13d RNA-targeting system33–38 with guide RNAs (gRNAs)
that target mature RNA exon-exon junctions (EEJs). We show that EEJs
are broadly targetable by Cas13, and that existingmodels, including our
TIGER deep learning model36, accurately predict EEJ gRNA efficacy,
suggesting similar rules govern targeting of EEJs and exons. The critical
innovation of our strategy is its ability to achieve isoform-specific
knockdown using gRNAs targeting unique EEJs across diverse tran-
scriptional and splicing event types.Wevalidate EEJ-specific knockdown
by reverse-transcription quantitative PCR (RT-qPCR) across twelve EEJs
in four genes and isoform-specific knockdown by long-read RNA-
sequencing (LRS) of six RBFOX2 EEJs. For RBFOX2 isoforms with alter-
native first exons, we also assess protein-level knockdown andmeasure
the downstream effects on splicing. Finally, we provide TIGER efficacy
predictions for ~2.2million EEJ-targeting gRNAs, the Isoviz Rpackage for
experimental design, and practical recommendations for isoform-level
perturbation using our EEJ-targeting strategy.

Results
Cas13d essentiality screen shows broad applicability of target-
ing common EEJs for RNA knockdown
Our strategy is, to our knowledge, the first to propose explicitly tar-
geting EEJs in mature RNA for isoform-specific knockdown. EEJs, as
opposed to exons, can be selectively targeted across all types of
alternative transcriptional and splicing events, expanding the number
of potentially targetable isoforms in complex transcriptomes. To
evaluate this potential, we categorized EEJs based on their isoform
specificity: (1) common EEJs are present in all isoforms of a gene, (2)
fully unique EEJs are exclusive to a single isoform, and (3) partially
unique EEJs are shared amongst a subset of isoforms (Fig. 1a). We
applied this classification to GENCODE v41 Basic Annotations21 and
identified 53,890 protein-coding and 23,502 lncRNA EEJs that are
uniquely targetable across 36,604 and 11,053 isoforms, respectively
(Fully Unique in Fig. 1b). Given that isoform expression is often tissue-
specific, somepartially unique EEJsmaybecome fullyunique in specific
contexts. By combining fully and partially unique categories, we esti-
mate that our EEJ strategy has the potential to target upwards of 97%of
protein-coding and lncRNA isoforms from multi-isoform genes.

EEJ accessibility, and thus targetability, has not been system-
atically evaluated for any RNA-targeting technology. Therefore, the
first step in testing our strategy was to evaluate whether gRNAs
spanning common EEJs could effectively knockdown RNA, indepen-
dent of isoform specificity. We considered several factors that might
limit junction accessibility–constraints that are less relevant for tar-
geting exons. First, Cas13d complex-target formation could be steri-
cally hindered by the exon-junction complex39 or by splicing factor
binding. Additionally, EEJs have a shorter nuclear lifespan than exons,
as they are only accessible to nuclear Cas13d in the brief window after
splicing but before export. While a previous Cas13d essentiality screen
in HEK293FT cells provided some supporting evidence that gRNAs
targeting EEJs could knockdown RNA, the number of EEJ gRNAs tested
was limited (n = 1559) across just 16 essential genes (Supplementary
Fig. 1A)36.

To assess whether Cas13d-gRNA complexes can efficiently access
EEJs at scale, we conducted an essentiality screen exclusively targeting
common EEJs in RNA. This screen–designed without gRNA efficacy
predictions–tested 50,310 gRNAs across 6,932 EEJs in 942 genes. Pre-
vious Cas13d essentiality screens targeted far fewer genes (e.g., 16 or

55) and primarily focused on exons36,38. Genes are categorized here
into three overlapping essentiality lists: (1) Gold Standard40,41, (2)
DepMap Common42, and (3) DepMap A37543 (Fig. 1c). As this screen
aimed to evaluate EEJ accessibility rather than isoform specificity, we
prioritized common EEJs expressed in A375 cells to achieve total gene
knockdown44 (‘Guide library design‘ in Methods). Controls included
1972non-essential (NE) gene gRNAs and963non-targeting (NT) gRNAs
(Fig. 1c). BecauseCas13ddoes not requirea protospacer adjacentmotif
(PAM), we tiled eight 23 bp gRNAs per EEJ from −15bp to +15 bp,
expecting a mix of active and inactive gRNAs. The gRNA pool was
transduced in two biological replicates into monoclonal Cas13d-
expressing A375 cells, and gRNA depletion was quantified by log2
fold change (LFC) at Days 7, 14, and 21 post-induction. We used gRNA
depletion as a proxy for RNA knockdown, i.e., a gRNAwith a significant
negative LFC corresponds to an active gRNA that effectively knocks
down its essential gene target (Fig. 1d).

To evaluate screen quality, we observed concordance between
biological replicates at Day 21 (R =0.69 for gRNAs targeting Gold
Standard essential genes; Supplementary Fig. 1B), and a positive cor-
relation with shared gRNAs from a prior HEK293FT screen (R =0.67,
Supplementary Fig. 1c)36. We also examined potential Cas13d collateral
activity45–47 by analyzing NE gene control gRNAs targeting 409 genes
ranging from 10 to 492 transcripts per million (TPM). As expected, the
knockdown of these non-essential genes by Cas13d did not lead to cell
death and thus, gRNA depletion in our screen (Supplementary Fig. 1D).

We next evaluated gRNA efficiency and EEJ accessibility across
essential genes.We anticipated that gRNAdepletionwould varywidely
across EEJs and genes, driven primarily by two factors: gRNA efficiency
and the degree of gene essentiality. As a first step, we classified gRNAs
as active or inactive based on a −1.96 LFC cutoff (corresponding to the
0.01 quantile of the NT control gRNAs’ normal distribution). Among
Gold Standard essential genes, a highly curated set that are almost
universally essential40,41, 30.3% of EEJ gRNAs were active (Fig. 1e, Sup-
plementary Fig. 1E), consistent with prior estimates (31.5% and 32.3% in
exons and EEJs36; Supplementary Fig. 1A). This high-confidence Gold
Standard gene set was used for subsequent analyses. For 840 common
EEJs with all 8 tiling gRNAs (116 Gold Standard genes), 72% were tar-
getable (≥1 active gRNA; Fig. 1f). EEJ targetability varied across
genes–for example, all EEJs in CCT8, EIF3B, and PSMD1were targetable
while <50% were targetable for EXOSC10, DDX49, and FTSJ3 (Fig. 1g).
This variation tracked with RNAi-based estimates of gene essentiality,
with less essential genes showing fewer active gRNAs (Fig. 1g). This
suggests that gRNA effectiveness may be underestimated in the
screen. Overall, these results demonstrate that EEJs are broadly
accessible to the RNA-guided Cas13d nuclease and targetable for RNA
knockdown.

Deep learning uncovers similar rules for gRNAs targeting EEJs
and exons
Our screen results (Fig. 1) indicated that 30.3% of randomly selected
EEJ gRNAs are effective. The TIGER deep learning model can predict
gRNA efficiency and enrich for active gRNAs beyond random
selection36, but it and similar models were trained primarily on exon-
targeting gRNAs35–38. Compared to exons, EEJs are bound by distinct
RNA-binding proteins and may show differential accessibility to
nuclear-localized Cas13/gRNA complexes due to splicing efficiency,
transcript position, and time to export. These factors may influence
gRNA efficacy and design. It remains unclear whether a model trained
on EEJ-targeting data would learn additional, or different, features. As
our screen includes more EEJ-targeting gRNAs than any previous
Cas13 screen, we are well-positioned to investigate this question.

To train TIGERmodel adaptations, we first developed SEABASS, a
Bayesian linear mixed model that integrates LFCs across timepoints
and replicates (Methods). SEABASS outputs two values per gRNA: a
slope of LFC over time and a standard error to quantify uncertainty
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(Fig. 2a). Unlike simple averages, SEABASS captures variance of de-
noised data formodel training. Amore negative slope indicates amore
active gRNA, while slopes near 0 indicate inactive gRNAs (Fig. 2a).

We retrained several TIGER model adaptations (Fig. 2b): (1) the
original TIGERmodel trained on exon LFCs, (2) TIGERjunction trained on
EEJ LFCs, (3) TIGERbass trained on EEJ SEABASS slopes, and (4) TIGERsite

trained on EEJ LFCs with additional sequence context. All models

except TIGERsite included cell non-specific features–such as RNA
structure–that were previously shown to modestly boost TIGER
performance36.

To evaluate how well TIGER, TIGERjunction, and TIGERbass classify
active versus inactive EEJ-targeting gRNAs for essential genes, we
generated cross-validated area under precision-recall curve (AUPRC)
values using observed screen data as labels. Because gene essentiality

Exon
inclusion

Exon
exclusion

8 tiling gRNAs/Exon-Exon Junction (EEJ)

Isoforms of the same gene
Isoform 201
Isoform 202
Isoform 203

Common

Common

Fully Unique (201)

Partially Unique
(202, 203)

15bp + 8bp

8bp + 15bp

Cas13d Essentiality Screen Library Design
8 Tiling gRNAs/EEJ

Strategy to Target gRNAs to Exon-Exon 
Junctions (EEJs) for Isoform-specific Knockdown

Cas13d Essentiality Screen Measures 
Dropout of Active gRNAs

Unique Targetability of Human GENCODE v41 
Basic Annotation EEJs and Genes

Cas13d dox induction
in A375 cells

Day 0

gR
N

A
R

ea
d

C
ou

nt
s

0

1

A  B  C

A  B  C

ED

Day 21

gRNAs

gR
N

A
R

ea
d

C
ou

nt
s

0
2
4
6

ED

A, D, and F gRNAs
classified as Active

F

F

1722

23502
5646

20940

80162

53890
56946

39072

389

11053
1435

11187

1923

36604
17800

5195

EEJ-level targeting Isoform-level targeting

0

20
00

0

40
00

0

60
00

0

80
00

0 0

20
00

0

40
00

0

60
00

0

80
00

0

lncRNA

Protein
coding

# of EEJs # of Isoforms

Cells expressing active gRNAs 
are depleted due to knockdown 

of an essential gene

30.3% Active gRNAs

0.00

0.25

0.50

0.75

1.00

−8 −4 0 4

Essential Gene Type

DEPMAP Common
Gold standard

DEPMAP A375

NT Controls

Pe
rc

en
t o

f E
EJ

 g
R

N
As

Non−essential Controls

EEJs are Broadly Accessible to Cas13d Based 
on gRNA Depletion Across Essential Genes

72% of Gold Standard EEJs are Targetable 
(at least 1 Active gRNA/EEJ)

EEJ Targetability is Variable Across Genes 
Consistent with RNAi Estimates of Gene Essentiality

b

Essentiality Gene Type

Gold Standard

# Genes # EEJs # gRNAs

DepMap Common

DepMap A375

Non-essential Controls

NT Controls

Essential Gene Totals 942 6,932 50,310

963

1,972

9,856

32,567

7,8871,074123

179

4,504

1,354

691409

640

c d
Genomic DNA extraction
+ sequencing of gRNAs

Day 0

Day 21

Day 7
Day 14

Fully Unique Partially Unique Single Transcript Common

f

g

e

Observed Avg. LFC (D21/D0)

0

50

100

2 4 6
Number of Active gRNAs/EEJ

Gold Standard Ordered by RNAi Gene Essentiality (Most --> Least Essential) 

N
um

be
r o

f E
EJ

s

1 3 5 7 8

0

25

50

75

100

C
C

T8
N

U
P

93
E

IF
3B

P
S

M
D

1
DY

N
C

1I
2

S
F3

B
1

U
S

P
39

D
D

X
18

S
N

R
N

P
20

0
E

IF
4A

3
S

F3
A

1
E

FT
U

D
2

E
IF

3D
E

IF
3A

W
D

R
12

H
N

R
N

P
U

S
F3

B
3

P
S

M
C

2
R

B
M

17
E

IF
5B

C
O

PA
S

FP
Q

S
U

P
T6

H
R

U
V

B
L2

D
D

B
1

R
PA

1
R

R
M

1
P

S
M

C
1

H
N

R
N

P
M

P
R

P
F1

9
R

P
L3

U
B

A
1

K
P

N
B

1
P

R
P

F3
1

D
D

X
51

DY
N

C
1H

1
V

C
P

IN
TS

9
P

R
P

F8
X

A
B

2
S

U
P

V
3L

1
P

S
M

C
4

H
E

AT
R

1
G

N
L3

FT
S

J3
N

U
P

54
Q

A
R

S
S

D
A

D
1

D
D

X
49

E
X

O
S

C
10

%
Ta

rg
et

ab
le

 E
EJ

s 
pe

r G
en

e

-0.6

-0.9

-1.2

-1.5

RNAi LFC Gene 
Essentiality

a

Article https://doi.org/10.1038/s41467-025-62066-5

Nature Communications |         (2025) 16:6948 3

www.nature.com/naturecommunications


varies, we assessed performance across increasingly stringent cutoffs
(5–45% active gRNAs per gene), including random gRNA selection as
a baseline (Fig. 2c). TIGERbass performs best at a lower cutoff, when the
data is noisier, but all three models converge to an AUPRC of 0.88 at
themost stringent cutoff. Notably, all TIGER-basedmodels outperform
random selection by ~twofold (Fig. 2c). At a moderate cutoff of 25%,
where we have more data, we observed similar trends using Pearson
correlation (Fig. 2d). TIGERbass not only outperforms the other models
when tested against its predictivemodality of SEABASS slopes but also
modestly outperforms TIGER and TIGERjunction at their predictive
modality of LFC, confirming the benefit of SEABASS’s de-noising
(R = 0.63 for TIGERbass versus R =0.61 and 0.55 for TIGERjunction and
TIGER, respectively) (Fig. 2d).

Following previous work36,38, we used SHapley Additive exPlana-
tions (SHAP)48 to assess features used by the model to predict gRNA
efficacy. First, we focused on nucleotide preferences for active gRNAs
by comparing SHAP values across the 23 bp target RNA sequence for
TIGER, which is trained on exon LFC data alone versus TIGERjunction,
which is trained on EEJ LFC data alone (dashed line; Fig. 2e). Pearson
correlations of positional nucleotides and observed LFC data pro-
duced similar plots. (Supplementary Fig. 2A), indicating that sequence
determinants of gRNA efficiency are indistinguishable for targeting
EEJs and exons.

Next, we asked whether there was broader sequence context
surrounding EEJs that influence gRNA efficiency, for example as a
result of secondary structure or sequence-specific splicing factor
binding.Wecompared two adaptations of TIGER: 1) TIGERjunction that is
trained using 23 bp of target RNA sequence and 2) TIGERsite that
considers −50/+50 bp around each EEJ site in themature RNA (Fig. 2b).
We trained TIGERjunction to predict a gRNA’s LFC and trained TIGERsite

to predict the mean of the eight gRNAs’ LFCs that target each EEJ.
When we tiled TIGERjunction SHAP values across the EEJ as we tiled
gRNAs across the EEJ in our screen (TIGERjunction tiles) and positionally
averaged TIGERjunction SHAP values (TIGERjunction tile mean), we
recovered almost exactly the TIGERsite SHAP profile within the tiling
window (between the gray dotted lines; Fig. 2f). This suggests that
TIGERsite simply learns to average the sequence preferences of the
eight possible gRNA alignments despite having the opportunity to
learn additional novel EEJ sequence preferences. We conclude from
this analysis that the predictive signal is almost entirely derived from
the local sequence of the gRNA/target, with minimal if any contribu-
tion frombroader sequence context–in linewithfindings fromWessels
et al.36.

TIGERbass input included 23 bp of target sequence and a set of cell
non-specific features relating to RNA structure (Fig. 2b). From this, the
model achieved a Pearson correlation of 0.59 between predicted and
observed slopes (5% gene essentiality cutoff; Supplementary Fig. S2B).
To explain discrepancies between the predicted and observed results,
we calculated residuals for each gRNA and investigated their associa-
tion with a set of non-sequence features, not included in TIGERbass

training (Supplementary Figs. S2C). We considered RNA half-life esti-
mates, gene expression, and nuclear RNA localization in A375 (Cas13d
is localized to the nucleus), gene length, intron length, relative EEJ
position in a gene, and gRNA tiling position. We fit a linear regression

to evaluate feature associations with residuals, but found negligible
relationships across all non-sequence features tested (Supplementary
Fig. 2D, E). We conclude that gRNA sequence, and thus its target RNA
sequence, are the primary features predictive of Cas13d gRNA EEJ
targeting efficiency. We hypothesize that this will hold true for future
RNA-targetingCRISPR systems. Practically, thismeans that one canuse
existing prediction tools for EEJ gRNA design such as TIGER or other
models35,38.

Isoviz R package automates experimental design for Cas13d-
based isoform-centric studies
The next step is to link EEJ targetability with isoform specificity, but
mammalian transcriptomes are complex, making both experimental
design and interpretation challenging. First, there is uncertainty
regarding which isoforms are expressed and at what levels in a given
cell type. Furthermore, some events, especially alternative 5’ and 3’
splice sites (SS), are difficult to visualize from a typical transcript dia-
gram but could have substantial consequences, especially if they
introduce a frameshift. Finally, selecting efficient gRNAs that span
specific EEJs can be time-consuming. The individual resources and
tools currently available to address these challenges are disjointed and
require extensive manual, error-prone labor.

To aid in designing isoform-centric experiments, especially
CRISPR-based ones, we developed Isoviz, an R package that integrates
transcript-level annotations from GENCODE or long read analyses,
spliced read counts for each EEJ, and TIGER gRNA predictions (Fig. 3a).
The result of this integration shows a clear link between each EEJ, its
expression within a cell type, and its corresponding isoform(s). Based
on this, a user can quickly design gRNAs to EEJs that map uniquely or
partially uniquely to knockdown an isoform in their cell type of
interest.

We illustrate the utility of Isoviz in the design of EEJ-based RNA
knockdown experiments for two genes with relatively simple tran-
script structures, COP1 and SPAG9. Isoviz allows for the visualization of
all EEJs and their corresponding isoforms, followed by a table with the
top TIGER scoring gRNAs for each EEJ, with the option to filter for a
subset of EEJs (Fig. 3b, c). Figure 3b identifies that the COP1⋅20769 EEJ
is specific to an exon inclusion event in the COP1-204 isoform, and the
SPAG9⋅117144 EEJ belongs to an exon exclusion event that is partially
unique and maps to all isoforms except SPAG9-201 (EEJ IDs are
assigned in Isoviz for ease of comparison). To select gRNAs that target
these EEJs, Fig. 3c shows four of the eight possible gRNA options per
EEJ and their TIGER score. Both visualization and table outputs save the
user significant time and reduce the possibility of error.

RT-qPCR confirms EEJ-specific RNA knockdown using EEJ gRNAs
To directly measure the EEJ-specificity and magnitude of RNA knock-
down for COP1 and SPAG9 gRNAs designed with Isoviz (Fig. 3c), we
created a non-viral, piggyBac-Cas13d vector system. In brief, we cloned
a doxycycline (dox)-inducible Cas13d (NLS-RfxCas13d-NLS) and a
gRNA cassette (hU6-DR-BsmBI)37 into two separate piggyBac transpo-
son backbones49, creating PB-Cas13 and PB-rtTA-gRNA,
respectively50–52. We generated stableHEK293 cell lines for the 16 COP1
and SPAG9 gRNAs (Fig. 3c) and measured RNA knockdown, with

Fig. 1 | Cas13d essentiality screen shows broad applicability of targeting com-
mon EEJs for RNA knockdown. a Schematic of EEJ categories: common (gray),
fully unique (spanning pink-purple exons), and partially unique (spanning pink-
yellow exons). Eight 23 bp gRNAs are tiled per EEJ, starting from 15 to 8 bp
upstream. bCounts of EEJs and isoforms in GENCODE v41 (Basic), categorized as in
(a), across 18,568 protein-coding and 14,849 lncRNA genes. c Library design sum-
mary: 50,310 gRNAs targeting 6932 EEJs across 942 genes from Gold Standard40,41,
DepMap Common42, and DepMap A37543 essential gene sets. Controls included
1972 non-essential and 963 non-targeting (NT) gRNAs. d Schematic of the essen-
tiality screen: Cells expressing gRNAs that knockdown essential genes are depleted

over the 21 day time course. eCumulative density function (CDF)plot ofDay 21/Day
0 log2 fold changes (LFCs) for gRNAs targeting essential genes in categories from
(c). Dashed lines indicate 30.3% active gRNAs for Gold Standard genes (defined by
LFC <0.01 quantile of NT gRNA normal distribution). f Barplot of active gRNA
counts per EEJ (max 8/8) for Gold Standard genes. EEJs with 0/8 active gRNAs (28%)
are excluded. g Percentage of targetable EEJs (≥1 active gRNA) per Gold Standard
gene. Genes with ≥6 EEJs are on the x-axis, ordered by RNAi-based essentiality.
Sourcedata are providedonGSE242107 andZenodo. Panels a anddwere created in
BioRender. Schertzer, M. (2025) https://BioRender.com/81f7cfw.
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target position centered at the splice site. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-025-62066-5

Nature Communications |         (2025) 16:6948 5

www.nature.com/naturecommunications


junction-specific primers, via RT-qPCR after 24hrs of dox induction of
Cas13d. All COP1 and SPAG9 gRNAs produced robust and consistent
knockdown across two biological replicates, ranging from 39 to 83%
reduction in RNA expression relative to control (Fig. 3d,

Supplementary 3A). We further show that RNA knockdown for all 8
COP1 gRNAs was similar in hESCs and across different timepoints of
Cas13 dox-induction (Supplementary 3B). Importantly, robust knock-
down (>80%) canbeobserved as early as 12 hpostdox-inductionand is

Fig. 3 | Isoviz R package automates experimental design to confirm EEJ-specific
RNA knockdown. a Overview of Isoviz inputs and functions. Required inputs (red
boxes) vary by function; default input files are available on GitHub but can be
replaced by user-defined data. Pre-processing steps (yellow) reformat input for
downstream functions. Main visualization and output functions (purple) operate
per user-specified gene. b Isoviz output for COP1 and SPAG9, showing isoform
structures and two selected EEJs per gene plotted as introns. EEJs are labeled with
read counts and corresponding isoforms. Users can select all or a subset of EEJs for
plotting. c Isoviz output table showing gRNAs targeting EEJs in (b) and their TIGER

scores. d RT-qPCR quantification of COP1 and SPAG9 RNA knockdown using EEJ-
targeting gRNAs from (c) at 24 hours of doxycycline. Knockdown is relative to cells
transfected with an empty gRNA cassette (n = 4 gRNAs per EEJ). Each boxplot
represents three RT-qPCRmeasurements from two biological replicates. Box plots
were made using ggplot and show the median (center line), the 25th and 75th
percentiles (box bounds), and the rangeof valueswithin 1.5× the interquartile range
(whiskers). Outliers beyond this range are shown as individual points. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-62066-5

Nature Communications |         (2025) 16:6948 6

www.nature.com/naturecommunications


maintained at similar levels through the longest tested timepoint of
72hrs. In line with a previous study53, we found that RT-qPCR primers
flanking or overlapping the gRNA cutsite showed the most RNA
knockdown, and we designed all RT-qPCR primers for future experi-
ments accordingly (Supplementary Fig. 3C).

To provide further evidence of the specificity, efficiency, and
versatility of our EEJ strategy, we used Isoviz to visualize annotated
transcript structure and design gRNAs for diverse splicing and tran-
scriptional event types in theMKNK2 and RBFOX2 genes in hESCs and
HEK293 cell lines (Supplementary Fig. 4A, B, respectively). In MKNK2,
we targeted two unique EEJs of alternative last exons in HEK293 cells54.
By RT-qPCR, we measured RNA knockdown of 78% at the 128207 EEJ,
whichmaps toMKNK2-202 andMKNK2-211, and 87% at the 128208 EEJ
of MKNK2-201 (Supplementary Fig. 4C). Importantly, the alternate
MKNK2 EEJ in each experiment was minimally affected.

In RBFOX2, the transcript structure is more complex, where each
annotated transcript contains combinations of 4 different event types.
This includes four alternative TSS (AltTSS), two separate alternative 3’
SS events (Alt3SS.1 and Alt3SS.2), and a cassette exon (CassetteEx;
Supplementary Fig. 4b). Importantly, the subtle base pair differences
at Alt3SS.1 (3 bp) and Alt3SS.2 (12 bp) EEJs cannot be distinguished by
eye, exemplifying how Isoviz visualization is necessary for accurately
identifying small splicing changes and mapping them to their corre-
sponding isoform(s). We did not test EEJ gRNAs at the cassette exon
event due to low expression of the exclusion product present in
RBFOX2-205 and RBFOX2-207. For all other EEJs represented in Sup-
plementary Fig. 4B, we again use RT-qPCR to measure robust and EEJ-
specific RNA knockdown in both hESC and HEK293 cell lines (Sup-
plementary Fig. 4D, E). Together, theCOP1, SPAG9,MKNK2 andRBFOX2
experiments emphasize the versatility of our EEJ strategy to target a
broad range of alternative transcriptional and splicing events.

PacBio long read RNA-sequencing confirms RBFOX2 isoform-
specific knockdown using EEJ gRNAs
We have shown that EEJ gRNAs achieve consistent and robust RNA
knockdown across diverse event types, cell types, replicates, and
timepoints. A crucial next step is to determine how EEJ-centric RNA
knockdown quantification relates to desired isoform-specific
knockdown. To accurately identify which isoforms are expressed
in hESCs and quantify isoform-level differences upon knockdown,
we performed PacBio long read RNA-sequencing (LRS55) on hESC
Empty (Control) and the six RBFOX2 EEJ RNA samples from Sup-
plementary Fig. 4D. We chose RBFOX2 here because of its high
isoform complexity, where each EEJ gRNA is expected to target a
subset of multiple isoforms. In fact, LRS analysis identified 12
RBFOX2 isoforms expressed in the unperturbed hESC control, six of
which have not been previously annotated in GENCODE (Fig. 4a, top
panel; isoforms >0.6 TPM or 10 full length reads in the control). The
bottom panel of Fig. 4a shows Isoviz integration of RBFOX2 EEJ-level
information with LRS transcript-level structure for both annotated
and novel isoforms.

To quantify isoforms in the LRS data, we first examined isoform
expression per EEJ for the AltTSS event in the unperturbed hESC
Control. Seven isoforms containing the RBFOX2⋅178147 EEJ (termed N-
short) hada combined expression of 70.4TPM (1,182 full length reads),
while four isoforms containing theRBFOX2⋅178149 EEJ (termedN-long)
were expressed at 21.7 TPM (364 full length reads) accounting for 76%
and 24%, respectively, of total RBFOX2 RNA expression in the Control
(Fig. 4b). Knockdown of the more abundant N-short EEJ reduced total
RBFOX2 RNA expression from 92 TPM to 35 TPM whereas knockdown
of the less abundantN-long EEJ hadminimal impact on total expression
(92 TPM to 89 TPM in Fig. 4b). This limited effect was due to an
increase in N-short RNA isoform expression (70 TPM to 85 TPM),
despite the expected decrease in N-long RNA (21 TPM to 3.1 TPM),
suggesting a compensatory feedback mechanism.

Next, we compared full-length TPM for each of the RBFOX2 iso-
forms in control relative to EEJ knockdown of the two AltTSS events
(Fig. 4c). As expected, isoforms containing the targeted EEJ (colored
points as in a) showed decreased TPM, while isoforms without the
targeted EEJ (gray points) did not (Fig. 4c, Supplementary Fig. 4F, G).
As an example, the point for the most abundant RBFOX2 RNA isoform
in the hESC control, RBFOX2-208 at 28.1 TPM (472 full length reads), is
marked in each plot. RBFOX2-208 contains EEJs 178147, 178145, and
178135 and decreases significantly in each knockdown from 28.1 to
3.31, 5.75, and 15.6, respectively (Fig. 4c, Supplementary Fig. 4F, G).
Conversely, RBFOX2-208 does not contain EEJs 178149, 178146, or
178136 and does not decrease in these knockdowns. Similar plots for
the Alt3SS⋅1 and Alt3SS⋅2 events are in Supplementary Fig. 4F, G. These
results confirm that targeting unique or partially unique EEJs is highly
specific in knocking down its intended isoform target(s). Remarkably,
this remains true for EEJs that differ by only three nucleotides, as in
Alt3SS⋅1 (Supplementary Fig. 4F).

Functional impact of RBFOX2 isoform-specific knockdown
in hESCs
Theultimate goal of developing an isoform-specific targeting system is
to advance our understanding of isoform biology. For most isoforms
of interest, the functional unit is the protein, so evaluating protein-
level knockdown is essential for interpretation of downstream effects.
We focused on the RBFOX2 AltTSS event, which had the greatest
impact on the protein sequence, with N-short and N-long isoforms
containing 8 and 78 unique amino acids at their respective N-termini
(Fig. 4d). Surprisingly, the knockdown of N-short isoforms, which are
most abundant at the RNA level (shown by short and long read RNA-
seq in Figs. 4a, b, respectively), showed aminimal decrease in RBFOX2
total protein expression relative to control via western blot (27%
reduction; Fig. 4d). Conversely, N-long isoformknockdown resulted in
an 83% reduction in total RBFOX2 protein. We confirmed these total
protein-level changes by quantifying the reduction in fragment ion
intensity of RBFOX2 peptides common to all isoforms using targeted
mass spectrometry (Fig. 4e, Supplementary Fig. 5A, B, Supplementary
Data 1, 2). These findings show that the lesser abundant RNA isoforms,
N-long, are the predominant RBFOX2 protein isoforms in hESCs and
further suggest that they are the functionally relevant isoforms.

RBFOX2 is a well-studied splicing factor that binds RNA through a
highly conserved RNA Recognition Motif (RRM) and interacts with a
specific set of splicing regulators via its C-terminal protein domain56,57.
Importantly, both N-short and N-long isoforms share the RRM and
C-terminal domain, but the biological relevance of RBFOX2’s diverse
N-termini remains largely unexplored. To investigate downstream
splicing changes following N-short versus N-long isoform-specific
knockdown, we performed RNA-sequencing followed by rMATS ana-
lysis across three RBFOX2 knockdown timepoints: 24, 48, and 96 hrs.
In the RBFOX2 total knockdown–using a gRNA targeting an EEJ shared
across all isoforms–we identified 93 skipped exon (SE) events that
were consistently differentially spliced across all timepoints (Fisher’s
combined test, adjusted for multiple testing using Benjamini-
Hochberg correction, FDR <0.05; Fig. 4f). Of these 93 SE events, 0
and 35 were significant across all timepoints in N-short and N-long
knockdown, respectively (Fig. 4f; Supplementary Data 3). We highlight
the effects on two SE events in GOLIM4 and CSTN1 (Fig. 4g left) and
validate using PCR (Fig. 4g right), demonstrating concordance with
RNA-seq rMATS quantification. These functional results are consistent
with our observation thatRBFOX2 protein-level changes are specific to
N-long knockdown.

Collectively, these data show that, despite their low RNA abun-
dance, N-long isoforms execute the splicing regulatory function of
RBFOX2 in hESCs. The discrepancy between RNA and protein isoform
expression may stem from factors such as translation initiation,
translation efficiency, or protein stability. Our findings highlight the
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need to consider these factors more broadly as potential mechanisms
by which alternative isoforms impact phenotypes. Notably, this dis-
covery was only possible with a system that targets the endogenous
locus and is capable of targeting alternative first exons, not just cas-
sette exons, demonstrating the valueof our strategy for understanding
the functional impact of isoform diversity.

Practical applicability of our unified EEJ-targeting strategy and
computational tools
Finally, we integrate our experimental and computational frameworks
to address key practical considerations for isoform-specific knock-
down studies. Specifically, we assess: (1) how TIGER-based gRNA
selection improves screen performance, (2) how well TIGER scores
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predict RNA knockdown levels, and (3) the likelihood of identifying an
effective gRNA for a given EEJ or isoform.

To address point 1, we re-evaluated screen performance in Fig. 1
by generating receiver operating characteristic (ROC) and precision-
recall (PR) curves using gold standard essential and non-essential
genes as positive and negative labels, respectively (Supplementary
Fig. 5C, D).We compared screen performancewith andwithout TIGER-
based gRNA filtering and observed improvements in classification as
TIGER score thresholds increased. AUROC improved from 0.79 (all
gRNAs) to 0.86 (TIGER score >0.2, Q3) and 0.89 (TIGER score >0.55,
Q4), while AUPRC increased from 0.58 to 0.74 and 0.81,
respectively–confirming TIGER’s utility for screen design. We also
provide Cas13-specific gene essentiality scores, calculated as the
median LFC per gene considering gRNAs with TIGER score >0.2
(Supplementary Data 4).

To address point 2–how well TIGER scores predict the level of
RNA knockdown–we plot correlations between observed screen LFC
and TIGER scores for the tenmost essential genes with greater than 50
predicted active gRNAs (R = −0.46 to −0.72; Fig. 5a). Classifying gRNAs
with TIGER score >0.2 as effective yields high precision across these
genes, ranging from0.89 (SF3B1; 64/72 gRNAs) to 0.62 (DYNC1H1; 137/
221 gRNAs). Experimenters can adjust the TIGER score threshold to
prioritize precision: raising the threshold to the top Q4 quartile (score
>0.55) increases precision to 0.97 (SF3B1) and 0.80 (DYNC1H1). For
screen design, we recommend prioritizing high precision to ensure
confidence that selected gRNAs will be effective. Conversely, for low-
throughput experiments targeting a few genes, we suggest selecting
the top two predicted gRNAs per EEJ, regardless of score, and testing
both for RNA knockdown (see additional guidance in Methods: Prac-
tical use of TIGER predictions for gRNA design).

While our essentiality screen conveniently allowed for the testing
of thousands of gRNAs at once, it provided only a proxy for the level of
RNA knockdown. To assess how TIGER predictions translate to actual
RNA knockdown, we aggregated all of the HEK293 RT-qPCR data
generated in this paper (34gRNAs across 14 junctions and4 genes) and
compared observed RNA knockdown to predictions from three pub-
licly available deep learning models for Cas13 gRNA efficacy predic-
tion: TIGER36, Wei et al. and Cheng et al. TIGER performs the best
(R = −0.86), and all gRNAs with TIGER score >0.2 were effective to
knockdown RNA>40% (Fig. 5b). Additionally, Wei et al. achieved a
good correlation of −0.74 and Cheng et al. shows a −0.56 correlation.
All models, except Cheng et al., agreed on which gRNAs would have
very low activity (Fig. 5b). Indeed, these gRNAs did not substantially
knockdown RNA.

To address point 3, we estimated the likelihood of identifying an
effective gRNA for targeting EEJs and isoforms genome-wide. We used
TIGER to score eight tiling gRNAs per EEJ across all GENCODE human
basic annotation transcripts (1.8 million gRNAs after filtering out

gRNAs with homopolymers and non-unique sequence; Fig. 5c). Based
on our assessment of TIGER performance and gRNA effectiveness
(Fig. 5a, b), we set a TIGER score threshold of 0.2 to identify 899,673
predicted active EEJ-spanning gRNAs (Fig. 5c, d). These active gRNAs
target 201,905 EEJs across 80,440 isoforms, belonging to 17,752
protein-coding and 12,831 lncRNA genes (Fig. 5e). Remarkably, if we
reconsider the number of isoforms from Fig. 1b that have unique or
partially unique EEJs that can be targeted with a predicted active EEJ
gRNA, we conclude that up to 89% of isoforms from multi-isoform
genes (excluding the 5195 protein-coding and 11,187 lncRNA single
transcript genes) are uniquely targetable (Fig. 5f). These targetable
isoforms harbor almost all types of splicing and transcriptional events,
including cassette exons, alternative 5’ and 3’ SS, and alternative first
and last exons.

Discussion
We show that EEJs are broadly accessible to the Cas13d complex–and
therefore targetable–for RNA knockdown. This expands the diversity
of RNAs that can be specifically targeted, as EEJs often contain
sequences unique to individual isoforms. Our EEJ-targeting strategy
offers a versatile approach for isoform-specific RNA knockdown–one
that is robust and applicable across diverse alternative isoform events,
genes, and cell types.

Initially, we considered that targeting EEJs might be challenging
due to their transient nature in the nucleus, or the Cas13d complex
being blocked by the disassembling spliceosome or the exon junction
complex (EJC). Basedon this,we examined a list of EEJ-relevant features
for TIGER model training (Fig. 2, Supplementary Fig. S2). We also
explored explicitly including predicted or measured RBP binding as
features58, but observed no improvement in predictive accuracy
(results not shown). We caution against over-interpreting this finding
given the limited cross cell-type accuracy of existing RBP binding
predictors and the lack of RBP binding profiles in A375. However, to
offer further evidence, we did not detect any effect of broader EEJ
sequence on gRNA efficacy beyond the 23 bp gRNA/target sequence
itself (Fig. 2f), implying that RBP binding does not play a substantial
role in determining gRNA efficacy. Thus, as with exon-targeting gRNAs,
EEJ-targeting gRNA efficiency is primarily dependent on gRNA and
target RNA sequence, and these sequence determinants are indis-
tinguishable between the two. Basedon this, we expect that a gRNAwill
work similarly across different cell types when its target is expressed.

Although not tested here, we speculate that, with minimal adap-
tations, the strategy of targeting EEJs could be extended to other
species that undergo splicing59, and that RNA-targeting systems
beyond Cas13d could also be effectively utilized for EEJ-based isoform
specific knockdown. These findings have additional implications for
RNA-based therapeutics including Antisense Oligonucleotides and
siRNAs60–62.

Fig. 4 | ValidationofRBFOX2 isoform-specific knockdownusingPacBio LRSand
assessment of the functional impact in hESCs. a Isoviz visualization of annotated
and novel RBFOX2 isoforms detected by PacBio LRS in hESCs (≥10 full-length reads
in control). TPM values are listed in parentheses next to each isoform. The lower
panel shows six selected EEJs plotted as introns from three events–an alternative
TSS (AltTSS), and two alternative 3’ splice sites (Alt3SS.1: 3 bp, Alt3SS.2: 12 bp). EEJs
are labeled with short-read coverage, relative abundance (%), and corresponding
isoforms. RBFOX2⋅178147 EEJ defines N-short isoforms; RBFOX2⋅178149 defines
N-long. LRS was performed as a single replicate. b Proportion of isoforms con-
taining RBFOX2⋅178147 or RBFOX2⋅178149 EEJs in LRS data. Each box represents
one isoform, colored as in (a), AltTSS. c Comparison of RBFOX2 isoform TPMs
between control and AltTSS knockdowns in LRS data. Each point is an isoform
colored by the whether it contains the EEJ being targeted with that knockdown.
RBFOX2-208 is the most abundant RNA isoform detected with LRS and is marked
for reference. d Diagram of RBFOX2 protein isoforms highlights N-terminal amino
acid (AA) differences (N-short MEK: 8 AA; N-long MAE: 78 AA). Western blot shows

total RBFOX2 protein expression in control and knockdowns; quantification nor-
malized to GAPDH. Band sizes are consistent with antibody documentation
(expected bands: ~40kDa N-short and ~47 kDa for N-long). e Fragment Ion Inten-
sities for two shared RBFOX2 peptides measured by targeted mass spectrometry,
serving as a complementary method to measure total RBFOX2 knockdown. n = 3
injection replicates. Box plots were made in ggplot and show the median (center
line), the 25th and75thpercentiles (boxbounds), and the rangeof valueswithin 1.5×
the interquartile range (whiskers). f Splicing changes in skipped exon events at
96 hr timepoint. Each point represents an event; deviation from the diagonal
indicates differential splicing relative to control. Total knockdown gRNA (targets
EEJ present in all RBFOX2 isoforms) used as a positive control. g Validation of two
skipped exon events from (f): GOLIM4 and CLSTN1. Percent spliced in (PSI) is cal-
culated across timepoints fromRNA-seq data (n = 1 for each timepoint) and for 72 h
timepoint from RT-PCR gels (top band = inclusion, bottom= skipping). PSI calcu-
lated from band intensities (ImageJ). Source data are provided as a Source Data file
and in Supplementary Data 2, 3, and GSE242107.

Article https://doi.org/10.1038/s41467-025-62066-5

Nature Communications |         (2025) 16:6948 9

www.nature.com/naturecommunications


A major challenge in interpreting isoform biology is distinguish-
ing isoform-level from gene-level effects, especially in knockdown/
knockout as opposed to isoform-switching systems.We describe three
possible scenarios inwhich isoform-specific function canbe inferred in
a high throughput screening context. First, a greater phenotypic effect
is measured upon knockdown of a lower expressed RNA isoform. Our
RBFOX2 case study provides a compelling example of this: knocking

down the relatively lowly expressed N-long RNA isoforms have a
greater effect on downstream splicing than knocking down the more
abundantN-short RNA isoforms. Barring anon-monotonic relationship
between total RBFOX2 expression and splicing, this strongly indicates
isoform-specific function–likely driven by enhanced translation or
protein stability in the N-long isoforms. Second, knockdown of two
isoforms have opposing effects. For example, one isoform might
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reduce proliferation while another promotes it. Third, there is a
stronger phenotypic effect upon knockdown of the higher expressed
isoform. This is themost challenging scenario to interpret because the
observed phenotype could be due to isoform-specific function or
simply from gene-level loss of expression. If one assumes a linear
relationship between total gene expression and phenotype, these
more subtle differences in isoform-specific differences can be detec-
ted. Importantly, in a screening context, SEABASS supports testing for
isoform differences for all three scenarios.

Althoughwe do not perform an isoform-specific functional screen
here,wepropose that our EEJ targeting strategy canbeapplied in a high
throughput setting. However, selecting an appropriate screening out-
put is critical when designing isoform-specific screens. An interesting
future direction is using Perturb-seq to generate high-dimensional
single-cell RNA-seq phenotypic data for the detection of isoform-
specific effects. CRISPRi knockdown typically produces a median of 45
differentially expressed genes (DEGs) for non-essential genes and 500
DEGs for essential genes63. This suggests that knocking down two iso-
forms of a gene withmeaningfully different functionwill likely result in
detectably different expression responses, even for genes not directly
involved in gene regulation. Ultimately, as the number of detectable
isoforms continues to grow across diverse cell types and disease con-
texts, isoform-level screening platformswill be valuable for prioritizing
isoforms of interest for further experimental follow-up.

We were particularly interested in the knockdown of the two
RBFOX2 alternative TSS events, as previous studies have primarily
focused on C-terminal differences56,57. While we were expecting to
identify isoforms with distinct protein functions, our findings instead
highlight an interesting and potentially widespread role of alternative
transcription and splicing: regulating gene dosage. This echoes recent
workdemonstrating thatmanygenetic effects on splicing likely impact
phenotypes through nonsense-mediated decay (and consequently,
dosage) rather than altering protein function64. We show here that
additional mechanisms–such as translation efficiency and protein
stability–must also be considered. These mechanisms are particularly
relevant for isoforms that vary at their N-termini,where 5’UTRsdirectly
contribute to translation initiation and the N-terminal amino acid
affects protein stability65,66.

It is now clear that isoform diversity plays a pivotal role in
development, cell-type specific regulatory programs, evolution, and
disease–fromMendelian conditions to cancer and complex traits such
as neuropsychiatric disorders. Despite this knowledge, it has remained
challenging to study the functions of individual alternative isoforms in
an endogenous cellular context with existing experimental and com-
putational methods. In this paper, we have made significant progress
to address this challenge.

Methods
Ethical statement
HUES66 was derived at Harvard University, where ethics approval was
obtained prior to its registration with NIH under NIH Human

Embryonic Stem Cell Registry; NIHhESC-10-0057. The New York Gen-
ome Center cannot speak to the consent process or conditions sur-
rounding donation except to note that all NIH-registered human
embryonic stem cell lines are in compliancewith federal requirements.
At the New York Genome Center, all research involving human
embryonic stem cells is overseen by its Institutional Stem Cell
Research Oversight Committee (ISCRO). This project was originally
approved by the NYGC ISCRO on July 11, 2019 under protocol #
ISCRO004.

Cas13d essentiality screen
Monoclonal cell line generation for screen. A375 cells were acquired
from American Type Culture Collection (ATCC Cat #CRL-1619). A375
cells were maintained at 37 °C with 5% CO2 in DMEM media (Ther-
moFisher Cat #11965118) supplementedwith 10% serum (SerumPlus II,
Sigma-Aldrich, Cat #14009C).

To generate the doxycycline-inducible Cas13d A375 cell line used
in the screen, we transduced cells with lentivirus carrying the pre-
viously published plasmid, TRE_NLS-RfxCas13d-NLS-HA (Addgene
#138149) at a low multiplicity of infection (MOI < 1). Cells underwent
drug selection for one week with 5ug/ml of blasticidin (ThermoFisher,
Cat #A1113903). Colonies were picked after sparse plating, expanded,
dox induced, and screened for Cas13d expression using western
blotting and immunofluorescence methods with an anti-HA antibody
(Cell Signaling Cat#2367). Cas13 knockdown activitywas confirmedby
FACS using CD46 as a positive control (Cell Signaling Cat #13241).

Guide library design. To design the Cas13d gRNA library targeting
exon-exon junctions (EEJs) in A375 melanoma cells, we identified EEJs
that have evidence of expression. First, we downloaded three publicly
available RNA-seq datasets from A375 cells (SRR6515912, SRR6515913,
and SRR6515914 from GSE10973144;. Next, we processed sequencing
reads according to LeafCutter recommendations15: reads were aligned
to hg38 (GENCODE v32 gtf annotations) using STAR v2.7.1 with para-
meters ‘--twopassMode’ and ‘--outSAMstrandField intronMotif’67.
Sequencing reads that overlap EEJs were counted using ‘regtools
junction extract’ v0.5.2 with parameters ‘-a 8 -m 50 -M 500000 -s 1’68.
Next, to define intron clusters using LeafCutter, we ran the ‘leafcut-
ter_cluster_regtools.py’ python script with ‘-m 30 -p 0.01 -l 500000
parameters’15.

To select genes to target in our essentiality screen, we employed a
multi-step filtering approach. First, we considered 1000 candidate
genes that had the lowest LFC (i.e. genes that, when knocked out,
reduced cell proliferation) from the GeCKO essentiality screen using
CRISPR/Cas9 in A375 cells 43DEPMAP43. Next, we overlapped this gene
list with the LeafCutter A375 EEJ counts discussed above, and we fil-
tered out EEJs that had <10 junction counts. We used Leafcutter clus-
ters to assess if the EEJs were common or unique in A375 cells,
requiring that unique EEJs have at least 15% usage across all three
replicates. Next, we designed eight 23 bp gRNAs overlapping each EEJ,
starting at −15bp and +8 bp and sliding by 1 bp to −8bp and +15 bp

Fig. 5 | Practical applicability of our unified EEJ-targeting strategy and
computational tools. a TIGER scores versus observed log2 fold changes (LFC) for
gRNAs targeting the 10 most essential genes in our Cas13 screen (>50 predicted
active gRNAs/gene). Each point is a gRNA colored by quartiles of TIGER scores
(Q4 =predictedmost active). Vertical and horizontal gray linesmark TIGER scoreof
0.2 and LFC of −1.96 (0.01 quantile of NT control gRNAs’ normal distribution),
respectively. Precision (Pr) and recall (Re) are shown for TIGER score >0.2. Linear
regression lines (black) and 95% confidence intervals (gray shading) are shown for
each plot. Pearson correlations are displayed per gene. p <0.001 (two-sided) for all
comparisons. b Pearson correlations between RT-qPCRmeasured RNA knockdown
and predictions from TIGER and two published Cas13 models. Data aggregated
from Figs. 3 and 4 (HEK293). Each point represents an average of ≥2 biological
replicates and ≥2 technical replicates. The gray vertical line on theTIGERplotmarks

a score of 0.2. Linear regression lines (black) and 95% confidence intervals (gray
shading) are shown. Pearsoncorrelations are displayed.p <0.001 (two-sided) for all
comparisons. cTIGER scores for gRNAs tiling GENCODE v41 EEJs (8 gRNAs/EEJ; −15/
+8 bp to −8/+15 bp relative to splice site). gRNAs with homopolymers or multi-
mapping were excluded. Colored ticks at the top correspond to gRNA in (b).
Dashed line marks recommended threshold (score >0.2). d Total EEJ gRNAs from
GENCODE (green) and those predicted active (score >0.2, purple) for protein-
coding and lncRNAgenes. eGENCODE-annotated EEJs, isoforms, and genes (green;
n above each bar) versus those likely targetable with predicted active EEJ gRNAs
(purple; score >0.2). f Isoform category counts (Fig. 1b), adjusted to exclude iso-
forms with no predicted active EEJ gRNAs (gray). Single-transcript genes were also
excluded (n = 5195 protein-coding and n = 11,187 lncRNA). Source data are provided
as a Source Data file.
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relative to the EEJ. We chose this tiling window of up to 15 bp over-
lapping a single exon based on previous work showing loss of RNA
knockdown efficiency using gRNAs less than 20 bp37. We chose this
conservative 15 bp cutoff, but others could test 16/7, 17/6, 18/5, and 19/
4 splits to see if they can achieve isoform-specific RNA knockdown.We
used ‘bedtools fasta’ to get the sequence.

To obtain the final set of gRNAs,weusedBowtie69 to align reads to
the transcriptome69 and filtered out gRNAs that aligned to more than
one gene locus when allowing up to 2 mismatches (-v 2). Additionally,
we eliminated gRNAs with homopolymers with a length 5 or more for
A’s, G’s, and C’s and 4 or more for T’s. After filtering, our final essential
gene screen library contained 50,310 gRNAs targeting 6932 EEJs in 942
essential genes. As controls, we included 963 non-targeting guides
(random 23 bp sequences with no matches in the transcriptome) and
1972 common EEJ gRNAs targeting 409 non-essential genes.

gRNA library synthesis, cloning, and amplification. Pooled gRNA
libraries were synthesized as single-stranded oligonucleotides (Twist
Biosciences) and resuspended to a concentration of 10 ng/µl in TE.
Cloning and sequencing were performed the same as by Wessels and
colleagues36.

Briefly, overhangs for Gibson cloning were added to the oligo-
nucleotide library by PCR using the oligo_amp_FW and oligo_amp_REV
primers (Supplementary Data 5). Libraries were PCR amplified in 8x
50ul reactions per 10,000 gRNAs (0.5 µl Q5 polymerase (NEB Cat
#M0493), 10 µl 5× reaction buffer, 2 µl oligo pool (1 ng/µl), 2.5 µl of each
forward and reverse primer (10 µM), 2.5 µl dNTPs (10mM) and 30 µl
water). PCR conditions were 98 °C/30 s, 10× (98 °C/10 s, 63° C/10 s and
72 °C/15 s) and 72 °C/3min. The PCR amplified library was gel-purified,
quantified, and cloned into BsmBI-digested pLentiRfxGuide-Puro
(Addgene #138151) via Gibson Assembly. Eight Gibson reactions were
performed with a 20-µl reaction volume each time (500 ng digested
plasmid (0.088 pmol), 123.15 ng purified oligo pool (1.3245 pmol, 15:1
molar ratio), 10 µl 2× Gibson Assembly Master Mix (NEB)), incubated
for 1 h at 50 °C. Next, to expand the gRNA library, the assembled library
plasmid pool was electroporated into Endura cells (Lucigen, Cat
#60242-2) at 50–100 ng/µl. After electroporation, cells were recovered
in LB medium for 1 h and plated on LB agar carbenicillin at 37 °C for
12–14 h. To achieve good library representation, we aimed to get a
coverage of >200 colonies per gRNA. The library plasmid pool was
extracted from harvested bacterial cells with the IBI Maxiprep Kit (Cat
#IB47125). Complete library representation with minimal bias was
verified by Illumina sequencing (MiSeq, Cat #MS-103-1002).

gRNA library screening and sequencing. Lentiviruswasproduced via
transfection of library plasmid pool and appropriate packaging plas-
mids (psPAX2, Addgene #12260 and pMD2.G, Addgene #12259) using
linear polyethylenimine MW25000 (Polysciences, Cat #23966). We
seeded tenmillion A375 cells per 10 cm dish and transfected with 60 µl
polyethylenimine, 9.2 µg plasmid pool, 6.4 µg psPAX2 and 4.4 µg
pMD2.G. At 3d post-transfection, viral supernatant was collected and
passed through a 0.45-µm filter and stored at −80 °C until further use.

Doxycycline-inducible RfxCas13d-NLS A375 cells were transduced
with the pooled library lentivirus in separate two infection replicates,
ensuring at least 1000× guide representation in the selected cell pool
per infection replicate using spinfection. After 24 h, cells were selected
with 1 µgml−1 puromycin (ThermoFisher, Cat #A1113803), resulting in
~30% cell survival. Puromycin selection was performed 72 h after the
addition of puromycin. Assuming independent infection events
(Poisson), we determined that ~83% of surviving cells received a single
sgRNA construct70. After completed puromycin selection, input sam-
ple was collected (Day 0), and RfxCas13d expression was induced by
the addition of 1 µg/ml doxycycline (Sigma-Aldrich, Cat #D9891). Cells
were passed every 2–3 d (maintaining full representation) and sup-
plemented with fresh doxycycline. We collected genomic DNA (gDNA;

at least 1,000 cells per construct representation) from each sample on
Day 0, Day 7, Day 14, and Day 21.

To extract gDNA, screen cells were lysed as in ref. 70 with 12ml of
NK lysis buffer for 100 million cells (50mM Tris, 50mM ethylenedia-
minetetraacetic acid, 1% SDS and pH 8). Once cells were resuspended,
60 µl of 20mg/ml ProteinaseK (Qiagen)was added and the samplewas
incubated at 55 °C overnight. The next day, 60 µl of 20mg/ml RNase A
(Qiagen) was added and mixed, and samples were incubated at
37 °C for 30min. Then, 4mlof prechilled 7.5Mammoniumacetatewas
added, and samples were vortexed and spun at 4000 × g for 10min.
The supernatant was placed in a new tube, mixed well with 12ml iso-
propanol and spun at 4000× g for 10min. DNA pellets were washed
with 12ml of 70% ethanol, spun and dried, and pellets were resus-
pended with 0.2× TE buffer (Sigma-Aldrich). In addition, we also gen-
erated linearized plasmid library input and diluted it down to mimic
similar copy number conditions as the gDNA samples.

To amplify the gRNA cassette from gDNA and add indexing for
Illumina sequencing,we used a two-stepPCRprotocol, PCR1 andPCR2,
respectively. For the PCR1 reaction, we used 960 µg gDNA for each
sample.We performed 96× 100 µl PCR1 reactions per sample (10 µl 10×
Taq buffer, 0.02U/µl Taq-B enzyme (Enzymatics, P7250L), 0.2mM
dNTPs, 0.2 µM forward and reverse primers and 100 ng gDNA per µl).
Thermocycler conditions were 94 °C/30 s, 20× (94 °C/10 s, 55 °C/30 s,
68 °C/45 s) and 68 °C/3min. For each sample, all PCR1 products were
pooled and mixed. For the PCR2 reaction, we performed 2 reactions
per sample (20 µl 5× NEB Q5 buffer, 0.01 U/µl Q5 enzyme, 20 µl PCR1
product, 0.2mMdNTPs and 0.4 µM forward and reverse PCR2 primers
in 100 µl). Thermocycling conditions for PCR2 were 98 °C/30 s, 7×
(98 °C/10 s, 63 °C/30 s and 72 °C/45 s) and 72 °C/5min. For each sam-
ple, PCR2 products were pooled, followed by normalization (gel-based
band densitometry quantification), before combining equal amounts
of uniquely barcoded samples.

The pooled product was then purified using SPRI beads. First, we
performed a 0.6× vol/vol SPRI to remove gDNA carryover, followed by
the addition of a 0.3× vol/vol SPRI (0.6 + 0.3 = 0.9× final) to the
supernatant to purify the ~260 bp PCR product. The final amplicons
were sequenced on Illumina NextSeq 500-II HighOutput 1 × 150 v2.5
(Cat #20024907).

Oligonucleotides can be found in Supplementary Data 5.

Cas13d essentiality screen analysis
Data pre-processing. Cutadapt v3.571 was used to demultiplex reads
based on barcode sequences in the forward primer of PCR2 during
screen library prep (Barcodes in Supplementary Data 6). We included
the 8 bp barcode plus 8 bp of the U6 sequence (“TCTTGTGG”) to
ensure the proper position of the barcode match within the read. We
allowed for 1 mismatch within the 16 bp sequence (-e 1 -O 16,
–action=none). Cutadapt was also used to trim 5’ (54bp) and 3’ (16 bp)
sequences upstream and downstream of the gRNA sequence (-e 0.1).
Bowtie v1.1.269 index was built from the screen library fasta file and
reads were subsequently aligned to the library index with strict para-
meters of -v 0 thatdo not allow formismatches and -m 1 that only allow
for a single alignment (--norc --best --strata). We used an in house R
script that inputs the sam alignment file and outputs a raw count
matrix of gRNA read counts per sample.

Technical replicates, re-sequencing of the same library for greater
read depth, were combined for each sample and all future analyses
were performed on this pool. Then, we added 1 to all values to prevent
division by 0 for entirely depleted gRNAs. Following DESeq72 we divi-
ded counts Kgt for each guide g by its geometric mean KR

g = ðΠtKgtÞ�1

across time-points t to obtain Dgt =Kgt=K
R
g . We then normalize by the

median-of-ratios s =mediang2nt ðDgtÞ corresponding to the non-
targeting (nt) gRNAs to give normalized counts Qgt =Dgt=s. We
visualized these normalized counts and removed gRNAs that had low
or high detection in the Day 0 sample (cutoffs are 0.01 and 0.99
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quartiles of normalized gRNA count distribution). Finally, we calcu-
lated log2 fold changes (LFCs) by dividing normalized counts across
each time point by the corresponding replicate at Day 0 and taking
their log2.

Essential gene classification lists for screen evaluation. We con-
sidered three essential gene lists to evaluate screen performance
across our 942 essential genes: (1) Gold Standard (n = 217 genes40,41),
(2) DEPMAP Common Essential genes list (CRISPRInferredCommo-
nEssentials.csv, n = 1,552 genes42), and (3) DEPMAP GeCKO A375
data43.

Defining active versus inactive gRNAs in Cas13d
essentiality screen. To label gRNAs as active vs inactive, we employ
the same methodology as36. We used maximum likelihood estimation
to fit a normal distribution to the mean LFC of non-targeting gRNA
replicates. An active gRNA was defined as one whose LFC falls below
the 1st percentile of this distribution (LFC < −1.96 in our screen).

Filtering of essential gene list for TIGER model training. Different
screening platforms and cell types are known to return non-
overlapping sets of essential genes, largely due to variability in gene
essentiality41,73. Some genes require complete knockout to impact cell
viability or proliferation,while others show significant effectswith only
partial knockdown. Previous Cas13 RNA knockdown essentiality
screens targeted a limited number ofgenes (16 and 55 in refs. 36,38), so
that there is no comprehensive essential gene list specific for the Cas13
platform. Gene-level variability could bias gRNA efficacy estimation if a
gene’s gRNAs are mis-classified as inactive only because the knock-
down was not sufficient to reduce cell proliferation. To avoid this bias
and ensure accurate labels for model training, we filtered out genes
with less than 5% active gRNAs, i.e. fewer than 1 gRNA depleted out of
20 (LFC < −1.96, corresponding to the 0.01 quantile of the NT gRNA’s
normal distribution). This removed 356 genes. This filtered list is only
used for TIGER model training.

Comparison to previous RNAi essentiality screens. A375 RNAi gene
essentiality scores were downloaded from DepMap (file: D2_combin-
ed_gene_dep_scores.csv). A single score indicating LFC was provided
for every gene.

SEABASS linear mixed model. Existing approaches for analyzing
essentiality screen data do not handle multiple time-points and repli-
cates. We therefore developed a probabilistic, hierarchical linear
mixed modeling approach which we call SEABASS (Screen Efficacy
Analysis with BAyesian StatisticS). Wemodel log2 fold changes ygtr for
guide g at time-point (week) t and replicate r using the linear mixed
model,

ygtr = ðβg +αgr Þt + ϵgtr ,

where βg is a per guide slope, ϵgtr � Tð0, σ1, τ1Þ is noise, αgr �
Tð0, σ2, τ2Þ are random slope (i.e. random effect) terms, and
Tðm, σ, τÞ is a Student-t distribution with meanm, scale σ, degrees of
freedom τ and therefore variance τσ2=ðτ � 2Þ (for τ >2). The
hyperparameters fσ1, τ1, σ2, τ2g are shared across all guides (and
genes). By fitting τ1 and τ2 we can control how heavy-tailed the noise
distribution is. For τ = 1 the Student-t corresponds to a Cauchy
distribution (extremely heavy tails), and for τ ! 1 a Gaussian (light
tails). The noise distribution parameters fσ1, τ1,σ2, τ2g are learnt on
the non-targeting (NT) guides only, where we fix βg =0. We
additionally explored using Laplace or explicit Gaussian or Cauchy
distributions for the noise and random slope terms but found these
provided a worse fit to the NT data according to the evidence lower

bound (ELBO). Our use of the Student-t distribution endows
SEABASS with natural robustness to outliers.

We put a gene-dependent prior on the per-guide slopes βg �
Dð0, sγÞ where Dðm, sÞ is a location-scale distribution with mean 0 and
scale s, and γ is the gene targeted by guide g. The per gene scales sγ
capture differences in gene essentiality. We explored D being Gaus-
sian, Cauchy, Student-t or Laplace, and choose Laplace since it gave the
lowest estimated false positive rate (assuming all significantly positive
βg are false positives). We put a log-normal prior on sγ
i.e. logðsγÞ � Nðμs, σ

2
s Þ.

We use stochastic variational inference (SVI) in pyro to fit the
model jointly across all guides (and all genes). We use a structured
variational posterior where fβg ,αg1, � � � ,αgRg for a guide are drawn
from a multivariate normal (where R is the number of replicates). This
is to account for the strong posterior dependencies we expect
between these variables. For sγ we use a (diagonal/mean-field) normal
variational posterior on each logðsγÞ. We optimize fσ1, τ1,σ2, τ2,μs, σsg
by placing Dirac delta variational “posteriors” on these parameters.

We found that SVI using just one Monte Carlo (MC) sample for
gradient estimation (the default in pyro) and the Adam optimizer did
not fully converge. To address this, we developed a strategy where we
monitored the ELBO for optimization having stalled, assessed by the
ELBO for the last 10 epochs not showing a statistically significant
(p > 0.05)downward slope.We thendouble thenumber ofMCsamples
used for gradient estimation and resume optimization. We go up to a
maximum of 32 MC samples. This resulted in improved ELBOs and
agreement between parameter estimates across random
initializations.

TIGERmodel architecture. We closelymimicked the published TIGER
architecture36: twoconvolutional layerswith 32filters, eachof length 4,
and rectified linear unit (ReLU) activations. This is followed by a max
pooling layer with a pool size of 2. The data is then flattened into a
vector and subjected to dropout with a rate of 0.25 for regularization.
Subsequently, the features are concatenated with non-sequential fea-
tures and fed into a dense layer with 128 sigmoid outputs. Another
dropout layer with a rate of 0.1 is applied here. This is succeeded by a
dense layer with 32 sigmoid outputs and another dropout layer with
the same 0.1 rate. The final layer is a linear output layer, producing a
scalar LFCprediction.We additionally score these predictions (i.e.map
them to the unit interval) using a sigmoid function similar to35,36,38. In
particular, we map the 0.1 quantile (very active LFCs) of all gencode
LFC predictions to 0.9 (a high score) and the 0.9 quantile (inactive
LFCs) of all gencode LFC predictions to 0.1 (a low score).

In generating TIGER’s, TIGERjunctions’s, and TIGERbass’s predictions
for our screen, all gencode EEJs, and our RT-qPCR tested gRNAs, we
performed 10-fold cross validation, ensuring that any gencode or RT-
qPCR gRNA never appears in the training pool. This procedure results
in a single prediction for gRNAs that appear in the training set TIGER
uses36. TIGERjunction uses our screen data, and TIGERbass uses SEABASS
slope estimates from our screen data–and an ensemble of 10 predic-
tions for gRNAs that did not, which we then average. TIGERjunction and
TIGERbass only consider transcript sequence since guide sequence is
redundant in our setting of perfectlymatched gRNAs. For TIGER guide
models (Fig. 2, Supplementary Fig. 2), we use +/−1 nucleotide of
additional transcript sequence context like the published TIGER
architecture36. However, we do not normalize for gene essentiality as
TIGER does, since this requires a significant number of guides target-
ing a single gene, which our screen does not have.

In the EEJ-targeting setting, Wessels et al.’s additional scalar fea-
tures related to gRNA position along a transcript, distance to nearby
EEJs, and transcript length are ill-defined. Their results suggest these
features have minimal impact on predictions (via SHAP analysis) and
on predictive performances (via feature holdouts). Therefore, we only
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consider the following features for our training of TIGER, TIGERjunction,
and TIGERbass (Fig. 2, Supplementary Fig. S2):

• Target accessibility

• log unpaired
• log unpaired at position 11
• log unpaired at position 19
• log unpaired at position 25

• Hybridization minimum free energy (MFE)

• positions 1 and 23
• positions 3 and 12
• positions 15 and 9

• Guide minimum free energy (MFE)
• Guide secondary structure

• presence of direct repeat stem loop (a Boolean variable)
• presence of a g-quadruplex (a Boolean variable)

For TIGERsite (Fig. 2), we provide 100 nt of transcript sequence
only and do not consider these additional scalar features.

Assessing model feature importance. To determine TIGER’s learned
gRNA design rules, we performed ten-fold cross validation, collecting
Shapley additive explanations (SHAP)48 values for each element in the
fold such that we have a SHAP value for every dataset element. Aver-
aging these values conditioned on positional nucleotide identity, we
observed TIGER learns known gRNAdesign rules bothwhen trained on
exon data36 and when trained on our EEJ screen data. We similarly
collected SHAP values for the junction-sequenceTIGERmodel (Fig. 2d)
that predicts the average of an EEJ’s tiled gRNAs’ LFCs from 50 nt up-
and down-stream of the EEJ.

Comparison to other publicly available models. To obtain Cheng
et al. predictions for all EEJ-spanning gRNAs, we re-trained the Deep-
Cas13 model using LFCs for the 5726 gRNAs provided in their
paper35(https://bitbucket.org/weililab/deepcas13/src/master/). We
then used this model to predict gRNA efficiency for all 2.2 million
GENCODE EEJ-spanning gRNAs. DeepCas13 outputs slightly different
but highly correlated (r > 0.94) predictions each time it is trained.
Therefore,we repeated thisprocess 5 times andaveraged themtoget a
single prediction score per gRNA.

To obtain Wei et al. predictions for all EEJ-spanning gRNAs, we
downloaded the already generated predictions for Human RefSeq
coding genes [refseq_coding_guides_prediction_sorted.csv] from
https://www.rnatargeting.org/38 and merged the 7.4 million gRNA
predictions with our GENCODE EEJ gRNA list. Their model uses gRNAs
that are 30 bp long, sowe extracted thefirst 23 bp. This results in gRNA
predictions for 1,617,364 of the 2.2 million GENCODE gRNAs.

Analysis of non-sequence feature association with gRNA efficacy
residuals. In addition to sequence and the ‘Cell non-specific set’ of
features (Fig. 2b and Methods: TIGER Model Architecture) that are
known to be important from ref. 36, we considered certain non-
sequence features that might be more important to EEJ targetability.
We hypothesized that these featuresmayhelp explain discrepancies in
gRNA efficacy predictions beyond what is captured by TIGERbass.
Guide-level residuals were calculated as observed slopes minus pre-
dicted slopes, and EEJ residuals were calculated by averaging all
available gRNAs per EEJ. The number of guides, EEJs and genes eval-
uated herein included 27,804, 3822 and 480 respectively.

For non-sequence features, some datasets were generated in-
house, while others were pulled from additional sources.

A375 gene expression, percent gene nuclear, and percent EEJ
nuclear were calculated from A375 RNA-seq data generated in this

paper (see ‘Methods: Illumina short read sequencing analysis’ and
Supplementary Data 6 for additional information). Briefly, gene counts
were obtained using featureCounts74 and were normalized to RPKM
(Reads Per Kilobase Million) and junction counts were obtained using
RegTools68. Percent nuclear values were obtained by dividing the
nuclear read counts by the sum of the nuclear and cytoplasmic read
counts for a gene or EEJ. We recognize that these are not absolutely
quantifications of nuclear localization but are relative quantifications
for comparison between genes or EEJs.

Gene length and intron length were obtained from Hg38 coordi-
nates from the ‘annotables’ package (https://github.com/
stephenturner/annotables). Intron lengths were calculated using
observed junction lengths. gRNA tiling position and relative EEJ posi-
tion were obtained from GENCODE v41 annotations. gRNA tiling
position indicates positions 1–8 along an EEJ where 1 is −15bp/+8 bp
and 8 is −8bp/+15 bp. Relative EEJ position was calculated based on a
EEJs’ basepair genomic distance to the gene TSS.

To obtain mean RNA half lives, we downloaded a matrix of genes
and RNA half lives across 33 studies75. Half lives were averaged for all
available studies for each gene.

All available features were centered and scaled to ensure that all
predictor variables were on a similar scale. We then fit amultiple linear
regression to assess each feature’s regression coefficient, standard
error and p-value.

Practical use of Isoviz and TIGER for gRNA design. We provide four
ways to access TIGER predictions for gRNA design.
1) tiger.nygenome.org webtool: Ideal for single gene experiments,

exon or EEJ based
• Convenient (no coding involved)
• Can predict on any sequence
• Option to find off targets
• Low throughput
• Model version does not include secondary structure as features
(this has minimal effect on TIGER performance)

2) https://github.com/daklab/tiger: Ideal for screen design, exon or
EEJ based
• High throughput
• Requires some coding

3) Isoviz R package: Ideal for EEJ based single gene
• Only contains prediction for annotated EEJs
• gRNAs tiling EEJ from -15 to +15
• Requires some coding

4) Zenodo with DOI 10.5281/zenodo.14968148: Ideal for EEJ based
screen design.
• Only contains prediction for annotated EEJs
• gRNAs tiling EEJ from −15 to +15
• Convenient

At various TIGER score thresholds, we consider the trade off
between Precision (for gRNAs predicted to work, how many will
actually work?) and Recall (for all gRNAs that work, how many do you
select?) in Fig. 5.We propose a score >0.2 as a reasonable threshold for
most experiments. However, in a screen design, we recommend
increasing the threshold to prioritize Precision, at the cost of
decreasing Recall (so you will not include some good gRNAs in your
screen). However, if you have a single EEJ or gene that you want to
target in a low-throughput experiment, we recommend selecting the
top two predicted gRNAs for that EEJ, independent of score, and
testing them for RNA knockdown.

One additional consideration is the tiling window around an EEJ.
We chose a conservative cutoff for our screen and subsequent
experiments, requiring at most 15 bp overlapping a single exon (15/
8 split for a 23 bp gRNA). However, Wessels et al. showed loss of RNA
knockdownefficiency using gRNAs less than 20bps. This suggests that
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gRNAs outside the windows tested here–such as 16/7, 17/6, 18/5, and
19/4–could also target isoforms specifically, but you would need to
verify that for yourself. This would be worth trying if you can’t find a
good gRNA within the −15 to +15 window.

In Fig. 5, we exclude GENCODE EEJ gRNAs with homopolymers
and non-unique sequences. However, in Isoviz and in the table on
Zenodo (DOI 10.5281/zenodo.14968148), we include these gRNAs, but
mark in a column why we recommend filtering it out. Importantly, the
Isoviz table and Zenodo download do not include off target
predictions–this is a feature only available with the webtool. Instead,
we provide a column that includes the broader target sequence at that
EEJ. You can copy and paste this sequence into the TIGERwebtool (run
it in off target mode) and get all off target loci with the predicted
knockdown effect of those off targets (see Supplementary Fig. 6
for demo).

Finally, when designing gRNAs for an isoform-centric experiment,
an initial challenge is confidently identifying which isoforms are
expressed in the cell type of interest. In our experience, LRS results are
more accurate to determine the presence or absence of specific iso-
forms. In our PacBio data, we detect a significant number of unan-
notated isoforms, consistent with other studies (Reese et al.). For
example, we were surprised to find that the predominant RBFOX2
isoform containing the most upstream alternative start EEJ
(RBFOX2.178149) was an unannotated isoform and not RBFOX2-220
(ENST00000695854.1), the canonical isoform, or RBFOX2-209
(ENST00000438146.7). However, we find EEJ counts from short read
RNA-sequencing data to be more accurate for event level comparison
within a sample (comparing the same transcript across samples is ok
with LRS). Importantly, Isoviz can incorporate both long and short
read data, using long reads to identify isoform structures and short
reads to give additional quantitative support at the EEJ-level.

piggyBac-Cas13 knockdown experiments
Cloning of Cas13d and gRNA constructs into piggyBac
transposon system. To create the doxycycline-inducible Cas13d pig-
gyBac vector, the TRE_NLS-RfxCas13d-NLS-HA was cloned from
Addgene plasmid # 13814937 into the piggyBac backbone from
Addgene plasmid # 12602949 by digestion with SpeI and EcoRI fol-
lowed by Gibson Assembly (NEB). As an aside, we initially tested four
versions of Cas13d for targeting EEJs: NLS-Cas13-NLS, NLS-Cas13-NES,
NES-Cas13-NLS, and NES-Cas13-NES. We decided to use NLS-Cas13-NLS
for all experiments in this paper.

To create the rtTA-sgRNA expressing piggyBac vector, the
hU6_RfxCas13d-DR_BsmBI was cloned from Addgene plasmid #
13815137 in the piggyBac backbone from Addgene plasmid # 12602849

by digestion with SfiI and BglII followed by Gibson Assembly (NEB).
Oligonucleotides used for cloning are in Supplementary Data 5. Full
plasmid sequences were verified using plasmidsaurus long read
sequencing (https://www.plasmidsaurus.com/).

To clone individual gRNAs, PB_hU6_RfxCas13d-DR_BsmBI was
digested with BsmBI (NEB R0739), dephosphorylated with Alkaline
Phosphatase (CIP; NEB M0525S), and gel extracted. Oligonucleotides
were synthesized for each top and bottom gRNA as 5’-AAAC [23 bp
Guide sequence]-3‘ and 5’-AAAA [23 bp Target Sequence]-3’, respec-
tively. Note that Guide Sequence and Target Sequence are outputs of
TIGER webtool and are reverse complements of one another. Oligos
were annealed using the standard protocol76. Briefly, 1 µl each of
100 µM top and bottom gRNA oligos were mixed with 0.5 µl T4 PNK
enzyme (NEB M0201S) and 1 µl 10x T4 ligation buffer (NEB B0202S) in
10 µl total volume and gRNAs were annealed in a thermocycler using
the protocol: 37 °C for 30min, 95 °C for 5min, ramp down to 25 °C at
5 °C/min. To ligate the annealed oligos into the digested plasmid, 2 µl
of 1:100 annealed oligos were mixed with 25 ng digested plasmid,
0.25 µl T7 ligase, and 5 µl 2x T7 Stick together buffer (NEBM0318L). The
ligation reaction was incubated at 25 °C for 20min and transformed

into competent cells. Guide RNA sequences cloned and tested for RNA
knockdown in this study are in Supplementary Data 7.

We plan to submit both plasmids to Addgene after publication: (1)
PB_TRE_NLS-RfxCas13d-NLS-HA and (2) PB_hU6_RfxCas13d-DR_BsmBI.

To allow propagation of the piggyBAC transposase from System
Biosciences on ampicillin plates, the transposase was cloned into SmaI
and HindIII sites into pUC19 (NEB) as in ref. 77.

Cell culture. HEK293 cells were acquired from ATCC (Cat #CRL-1573).
HEK293 cells were maintained at 37 °C with 5% CO2 in DMEM media
(ThermoFisher Cat #11965118) supplemented with 10% serum (Serum
Plus II, Sigma-Aldrich, Cat #14009C).

HUES66human embryonic stemcells (hESCs)were obtained from
Harvard University. Cells were maintained at 37 °C with 5% CO2 in
StemFlex media (ThermoFisher Cat #A3349401) and grown on
Geltrex-coated plates (ThermoFisher Cat #A1413302). For passaging,
Accutase (ThermoFisher Cat #A1110501) was used to dissociate cells
and 10 µMROCK inhibitor Y-27632 dihydrochloride (Tocris Cat #1254)
was added to the media for plating.

Stable transfections of piggyBac Cas13 system. With piggyBac, the
number of integrations of cargo plasmids can be tightly controlled by
changing the ratio of cargo plasmids to PB transposase plasmid49,78,79.
We initially tested two gRNAs at five different gRNA:Cas13:transposase
ratios in human embryonic stem cells (hESCs). We perform all
experiments in this paper at a 2:2:1 ratio.

Togenerate stableCas13/gRNA-expressingHEK293cell lines, 2 ×105
cells were plated in a single well of a 12-well plate and transfected the
following day using Lipofectamine 3000 (Invitrogen #L3000001)
according to themanufacturer’s protocol. A 2:2:1 ratio of piggyBac cargo
vectors (Cas13d and gRNA) and pUC19-piggyBac transposase, totaling
1.25 µg total of plasmid DNA was mixed with Mix #1 (50 µl OptiMEM
+2.5 µl P3000) per well. Mix #2 (50 µl OptiMEM +1.88 µl Lipofectamine
3000 reagent) was added and incubated for 10min before adding to
individual wells. On the day after transfection, cells were selected with
100 µg/mL Hygromycin (ThermoFisher #10687010) and 400 µg/mL
G418 (ThermoFisher #10131035) for 7–9 days. After selection, Cas13d
expression was induced by adding 1 µg/mL doxycycline (Sigma #D3447-
500MG) to the media for 24h before cells were harvested.

RNA extraction and RT-qPCR analysis. RNA was extracted using
TRIzol (Invitrogen #15596018) according to the manufacturer’s pro-
tocol. The Qubit RNA HS Assay Kit (Invitrogen #Q32855) was used to
quantify RNA and the High Capacity cDNA Reverse Transcription Kit
(Invitrogen #4368813) was used to RT 500ng–1 µg of RNA. qPCR was
performed using iTaq Universal SYBR Green (Bio-Rad #1725122) and
primers listed in Supplementary Data 5.

We perform standard RT-qPCR analysis to measure the relative
RNA knockdown at each target EEJ, comparing measurements taken
using the same qPCR primers across samples. To control for sample to
sample variation in RNA quantity and RT efficiency, we normalize each
target Ct value to the Ct value of a housekeeping control gene within
the same sample. Below each figure, we list the number of technical
replicates (measurements from the same cDNA sample) and biological
replicates (measurements from different transfections) performed in
each assay.

PCR validation of skipped exon splicing events. PCR reactions were
performed with 2 µl cDNA from HUES66 RBFOX2 knockdown cells
treated with 1 µg/mL doxycycline for 3 days. Phusion DNA Polymerase
with HF buffer (Thermo F530L) and primers flanking the GOLIM4 and
CLSTN1 skipped exon events were used. PCR was carried out for 30
cycles, and products were run on a 2% agarose gel. Exon inclusion and
exclusion bands were quantified using ImageJ. Primers are listed in
Supplementary Data 5.
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RNA fractionation. To isolate RNA from cytosolic and nuclear frac-
tions, cells were washed twice with 1mL cold PBS and scraped in 1mL
PBS + 1mM PMSF+ 1:100 protease inhibitor cocktail (PIC, Sigma
P8340). 200uL was removed at this step and added to 1mL Trizol
(total RNA).The remaining cellswere centrifuged at 1500 × g. for 5min,
and resuspended in 250uL low salt solution (10mM KCl, 1.5mM
MgCl2, 20mM Tris-HCl pH 7.5) supplemented with 1mM PMSF, 1mM
DTT, and 1x PIC. Triton X-100 was added to a final concentration of
0.1% and cells were rotated for 10min at 4 °C, then centrifuged for
5min at 1500 × g. 200 uL of supernatant was removed and added to
1mL Trizol (cytosolic fraction). The remaining supernatant was dis-
carded and the nuclear pellet was washed by rotating for 2min at 4 °C
in low salt solution without Triton X-100 and centrifuged at 1300 × g
for 10min. Nuclear pellet was resuspended in 1mL Trizol (nuclear
fraction). Isolation of RNA fromTrizol was performed according to the
manufacturer protocol.

Proteomics experiments and analysis
Protein extraction. RBFOX2 knockdown HUES66 cells (3 days after
induction with 1 µg/mL doxycycline) were washed with PBS and then
lysed with 300ul ice cold RIPA (Thermo #89900) supplemented with
1mMPMSF (Thermo#36978) and 1xprotease inhibitor cocktail (Sigma
#P8340) in a 12-well plate on ice for 5min. Cells were scraped, trans-
ferred to 1.7ml microcentrifuge tubes and sonicated at 20% intensity
for 1 × 30 s pulse (Qsonica Q125 Sonicator with 1/8” diameter probe).
Samples were centrifuged at ~14,000× g for 15min at 4 °C and the
supernatant was transferred to a new tube.

Western blot. Prior to western blotting, protein levels were quantified
using the BCA Protein Assay Kit (Thermo #23227). 15 µg total protein
was prepared in 1x SDS sample buffer (Thermo #LC2676) with 50mM
DTT and boiled for 5minutes at 100 °C. Proteins were transferred onto
a nitrocellulose membrane, blocked in 5% milk for 1 h at room tem-
perature, and incubated in primary antibody overnight at 4 °C. Primary
antibodies used were GAPDH (Cell Signaling, #2118; 1:1000) and
RBFOX2 (Bethyl Laboratories, A300-864A; 1:1,000). Membranes were
washed 3x for 10minutes each in 1x TBST and incubated in secondary
antibody for 1 h at RT (Thermo, #31460; 1:10,000). Membranes were
washed 2 × 10min in TBST and 1 × 10min in TBS followed by 5min ECL
incubation (SuperSignal West Pico Chemiluminescent Substrate,
Thermo, #34577) and imaging using the C-Digit Blot Scanner (Licor).

Protein digestion. Whole cell lysate pellets were prepared for each of
three conditions: Control, N-short Knockdown, or N-long Knockdown.
Approximately 10% of each lysate was used as input for each of two
filter-aided sample preparations (FASP) adapted from ref. 80: one
using Trypsin (Promega, V5280) and the other using Asp-N (Promega,
VA1160), 1 µg. Each digestion yielded ~20 µg of peptide as assayed by
NanoDrop A280 (ThermoFisher Scientific). Peptides were desalted
using Pierce Peptide Desalting Spin Columns (Pierce, ThermoFisher
Scientific). The manufacturer’s protocol was used with a substitution
of 0.1% trifluoroacetic acid (TFA) with 0.1% formic acid (Optima LC/MS
grade, Thermo Fisher Scientific).

LC-MS targeting of RBFOX2 peptides. Desalted samples were ana-
lyzed in triplicate by nanoLC-MS/MS using a Dionex Ultimate 3000
(Thermo Fisher Scientific, Bremen, Germany) coupled to an Orbitrap
Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific, Bremen,
Germany). Each injectionof ~1μg peptideswas loaded onto an Acclaim
PepMap 100 trap column (300μm× 5mm× 5μm C18) and gradient-
eluted from an Aurora Ultimate TS analytical column (75μm×25 cm,
1.7μm C18) equilibrated in 100% solvent A (0.1% formic acid in water)
and 0% solvent B (80% acetonitrile in 0.1% formic acid). The peptides
were eluted into the mass spectrometer at 400nL/min up to 100% B
over a period of 90min. MS2 spectra were acquired using the tMS2

(otherwise known as PRM) targeting method. Using this method, only
the m/z corresponding to peptides of interest were selected for MS2
acquisition. Separate lists were used for Trypsin-generated peptides
and AspN-generated peptides (see Supplementary Data 1 for list of
peptides). The following instrument settings were used: positive ion
mode was used with 1.7 kV at the spray source, RF lens at 30% with
advanced peak determination and XCalibur version 4.5.445.18. Full MS
scans were acquired in the Orbitrap from 300 to 2000m/z with
120,000 resolution. In parallel, the tMS2 targeting was performed on a
list of m/z corresponding to either 11 tryptic or 18 AspN-derived pep-
tides of interest. Ions were isolated in the quadrupole, HCD was used
for fragmentation (30% normalized collision energy). The resulting
fragments were detected in the Orbitrap at 15,000 resolution with
standard AGC target and dynamic maximum injection time mode.

Data analysis using Skyline. Target peptide detection was evaluated
using the Skyline software suite81 (Skyline (64-bit) 24.1.0.199
(6a0775ef83)). Two tryptic peptides shared among all RBFOX2 iso-
forms, GFGFVTFENSADADR and ILDVEIIFNER, met dot product spec-
tral correlation criterion of at least 0.5. For each common peptide, the
fragment ion intensity from each triplicate injection was normalized
relative to the average fragment ion intensity of the Control to gen-
erate the boxplots in Fig. 4e (see Supplementary Data 2 for replicate
values). All Skyline and mass spec raw file data was uploaded to the
Panorama Web repository.

High throughput sequencing and additional analyses
Analysis ofGENCODEbasic annotations. TheRcodeused togenerate
the GENCODE summary barplot in Fig. 1b (human) are added to the
Isoviz package (isoviz_junction_to_transcript_summary.R). The code can
be run in two ways: 1) using GENCODE annotations or 2) long read
sequencing generated annotations specific to a cell type. GENCODE
annotations for additional species beyond humanmay also be used. The
table includes all EEJs present in the input file with two classification
columns: ‘junction_category’ indicates whether the EEJ is classified as
common, fully unique, partially unique, or single transcript and ‘Iso-
form_targetable’ indicateswhether the isoformcanbe targeteduniquely.
When comparing classifications of EEJs and isoforms using long read
data annotations, outputs are expected to vary based on cell type. It is
recommended to consider EEJ and transcript classifications specific to
your cell type of interest when designing experiments.

Illumina short read sequencing. Per RNA sample,we combined 1 µgof
total RNA + 2 µl 1:100 ERCC RNA Spike-in Mix #1 (Invitrogen
#4456740). Librarieswere preparedusing theKapaRNAHyperPrepKit
with RiboErase (Roche #08098131702), pooled, and sequenced using
the Nextseq 500/550 High Output Kit with 150 cycles (Illumina
#20024907).

Illumina short read sequencing analysis. RNA-seq readswere aligned
to hg38 genome using STAR v2.7.1 and ‘--twopassMode Basic’ and
‘--outSAMstrandField intronMotif’ parameters (Index built with GEN-
CODE v41 basic annotations gtf67). Samtools v1.9 was used to filter for
reads with a mapping quality greater than 20, sorted, and indexed82.

To determine the gene-level RPKM and TPM counts in A375 total,
nuclear, and cytoplasmic RNA-seq data, alignment bam files were
overlaid with the GENCODE v41 basic annotation gtf file using fea-
tureCounts (subread v2.0.4)74.

HEK293, hESC, and A375 junction counts (provided in Isoviz and
used for non-sequence features in Supplementary Fig. S2) were gen-
erated using Regtools extract v0.5.268 with ‘-a 8 -m 50 -M 500000 -s 0’
parameters.

rMATSdifferential splicing analysis. Differential splicing analysis was
performed using rMATS v4.1.183 and GENCODE v41 Basic Annotations
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gtf. First, we ran rMATS –task prep for each aligned bam across
knockdown conditions and timepoints (--b1 all_bams.txt, -t single
--libType fr-firststrand --readLength 158 --variable-read-length --allow-
clipping). Next, we combined the prep results in a single post step
(--task post). This generates a summary of all data across a single set of
events with the same event IDs. Finally, at each timepoint, we statisti-
cally compared events in the control to each of the RBFOX2 knock-
downs using prepare_stat_inputs.py for each comparison followed by
rMATS with –task stat for the final output.

Because we lacked biological replicates at each timepoint for
statistical analysis, we used Fisher’s method to integrate the three
rMATS p-values for each event across time points. Specifically, we
calculate the test statistic,

ð2Þ

where i indexes time-points, and then calculated a combinedp-value as
p= 1� F6ðTÞ whereF6 is the CDF of a chi-squared distribution with 6
degrees of freedom. This combined p-value approach enabled us to
identify splicing events that consistently responded to RBFOX2
knockdown.

For analysis in Fig. 4, we only considered the 93 skipped exon
events (SE) with false discovery rate <0.05 in the total knockdown
sample (Fisher’s combined test across timepoints, adjusted for false
discovery using the Benjamini-Hochberg correction). We compare
these SE events across total, N-short, andN-longRBFOX2 knockdowns.
A summary of these events is in Supplementary Data 3.

PacBio long read sequencing. Prior to sending RNA samples to Pac-
Bio for long read sequencing, the RNA integrity number (RIN) was
calculated using the RNA 6000 Nano Kit (Agilent #5067-1511). RIN
scores ranged between 8.7 and 9.7, indicating high quality, intact RNA.
Per RNA sample, we combined 1 µg of total RNA+ 2 µl 1:100 ERCC RNA
Spike-in Mix #1 (Invitrogen #4456740).

MAS-Seq bulk Iso-Seq libraries were generated in collaboration
with PacBio using a pre-commercial protocol that implements the
MAS-Seq concatenation method55. Briefly, cDNA molecules were con-
catenated into an ordered array, in this case, an 8-fold array, and
sequenced on the Revio system. The concatenated array is sequenced
as a HiFi read and then bioinformatically de-concatenated into seg-
mented reads (S-reads) which represent the original cDNA molecules.

PacBio long read sequencing analysis. A pre-commercial version of
the SMRT LINK analysis pipeline was used to generate HiFi reads, S-
reads, and subsequent full-length reads and high-quality isoform
sequences. After the isoseq3 refine step where full-length non-chimeric
reads were obtained in bam file format, we continue with our own
analysis pipeline.

Minimap2 v.2.1784 was used to align reads to GRCh38 human
genome reference with -ax splice:hq -uf parameters. Secondary align-
ments were removed, and aligned reads were filtered for mapping
quality greater than or equal to 60. The resulting bam files were con-
verted to BED12 format and PSL format with FLAIR’s helper scripts85;
https://flair.readthedocs.io/en/latest/cite.html). Then, additional fil-
tering was applied to select for full length reads based on overlap with
annotated transcription start sites (TSS) and transcription end sites
(TES).Our custom script required overlap between −10 bp to +50 bpof
TSS and −50bp to +10 bp of TES (using human GENCODE v41 Basic
annotation). Reads that shared the same junction chain were grouped
together and collapsed, using a custom script adapted from FLAIR
collapse85. Importantly, our custom collapse script ignores start and
end coordinates of the reads, allowing reads with the same junction
chain, but slight variations in TSS or TES, to be grouped together.
Unspliced reads (i.e. mono-exonic reads) were excluded. Resulting full
length, collapsed reads were matched with transcripts in GENCODE

v41 basic annotations, and any transcripts without a match were still
overlapped with the proper gene andwas assigned a unique transcript
ID through our custom scripts. Finally, the number of reads grouped
together per transcript were tallied and output to a separate file per
sample. The “million” in TPMwas calculated basedon the total number
of full length reads after filtering.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencingdata generated in this studyhas beendeposited toNCBI
Gene Expression Omnibus (GEO) under accession number GSE242107.
All mass spectrometry data generated in this study has been deposited
to Panorama Web repository under accession number PXD060902.
TIGER gRNA predictions across all GENCODE v41 EEJs can be down-
loaded from Zenodo with DOI 10.5281/zenodo.1496814886. Source
data are provided with this paper.

Code availability
Code is publicly available for SEABASS on github [https://github.com/
daklab/seabass] and pypi [https://pypi.org/project/seabass/0.0.5/],
Isoviz R package on github [https://github.com/daklab/isoviz], and
TIGER on github https://github.com/daklab/tiger and with a user-
friendly website for gRNA prediction at [tiger.nygenome.org].
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