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INTRODUCTION:Genome-wideassociationstudies
(GWASs) have identified thousands of human
genetic variants associatedwith diverse diseases
and traits, and most of these variants map to
noncoding loci with unknown target genes and
function. Current approaches to understand
which GWAS loci harbor causal variants and to
map these noncoding regulators to target genes
suffer from low throughput. With newer multi-
ancestry GWASs from individuals of diverse
ancestries, there is a pressing and growing need
to scale experimental assays to connect GWAS
variants with molecular mechanisms.

Here, we combined biobank-scale GWASs,
massively parallel CRISPR screens, and single-
cell sequencing to discover target genes of
noncoding variants for blood trait loci with
systematic targeting and inhibition of non-
coding GWAS loci with single-cell sequencing
(STING-seq).

RATIONALE: Blood traits are highly polygenic,
and GWASs have identified thousands of non-
coding loci that map to candidate cis-regulatory
elements (CREs). By combining CRE-silencing
CRISPR perturbations and single-cell readouts,

we targeted hundreds of GWAS loci in a single
assay, revealing target genes in cis and in trans.
For select CREs that regulate target genes, we
performed direct variant insertion. Although
silencing the CRE can identify the target gene,
direct variant insertion can identify magni-
tude and direction of effect on gene expression
for the GWAS variant. In select cases inwhich
the target gene was a transcription factor or
microRNA, we also investigated the gene-
regulatory networks altered upon CRE pertur-
bation and how these networks differ across
blood cell types.

RESULTS: We inhibited candidate CREs from
fine-mapped blood trait GWAS variants (from
~750,000 individual of diverse ancestries) in
human erythroid progenitors. In total, we
targeted 543 variants (254 loci) mapping to
candidate CREs, generatingmultimodal single-
cell data including transcriptome, direct CRISPR
gRNA capture, and cell surface proteins.
We identified target genes in cis (within

500 kb) for 134 CREs. Inmost cases, we found
that the target gene was the closest gene
and that specific enhancer-associated bio-
chemical hallmarks (H3K27ac and acces-
sible chromatin) are essential for CRE function.
Using multiple perturbations at the same
locus, we were able to distinguished be-
tween causal variants from noncausal var-
iants in linkage disequilibrium. For a subset
of validated CREs, we also inserted specific
GWAS variants using base-editing STING-
seq (beeSTING-seq) and quantified the ef-
fect size and direction of GWAS variants on
gene expression. Given our transcriptome-
wide data, we examined dosage effects in cis
and trans in cases in which the cis target is a
transcription factor or microRNA. We found
that trans target genes are also enriched for
GWAS loci, and identified gene clusters within
trans gene networks with distinct biological
functions and expression patterns in primary
human blood cells.

CONCLUSION: In this work, we investigated
noncoding GWAS variants at scale, identi-
fying target genes in single cells. These meth-
ods can help to address the variant-to-function
challenges that are a barrier for translation
of GWAS findings (e.g., drug targets for
diseases with a genetic basis) and greatly
expand our ability to understand mecha-
nisms underlying GWAS loci.▪
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Variant-to-Function (V2F) challenges for GWAS
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STING-seq, Systematic Targeting and Inhibition of 
Noncoding GWAS variants with single-cell sequencing 
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STING-seq addresses V2F challenges and deepens our understanding of gene regulation

Integrate loci 
found in 
non-European 
ancestries

Distinguish likely 
causal variants 
from LD proxies

Target locus

Identify trans-regulatory networks and their subnetworks

Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and
their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of
noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This
approach can identify target genes in cis and trans, measure dosage effects, and decipher gene-
regulatory networks.
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Most variants associated with complex traits and diseases identified by genome-wide association studies
(GWAS) map to noncoding regions of the genome with unknown effects. Using ancestrally diverse,
biobank-scale GWAS data, massively parallel CRISPR screens, and single-cell transcriptomic and
proteomic sequencing, we discovered 124 cis-target genes of 91 noncoding blood trait GWAS loci. Using
precise variant insertion through base editing, we connected specific variants with gene expression
changes. We also identified trans-effect networks of noncoding loci when cis target genes encoded
transcription factors or microRNAs. Networks were themselves enriched for GWAS variants and
demonstrated polygenic contributions to complex traits. This platform enables massively parallel
characterization of the target genes and mechanisms of human noncoding variants in both cis and trans.

A
major goal for the study of common dis-
eases is to identify causal genes, which
can clarify biological mechanisms and
inform drug targets for these diseases.
To this end, genome-wide association

studies (GWASs) have identified thousands
of genetic variants associated with disease
outcomes and disease-relevant phenotypes.
However, because these associations are nearly
always found in noncoding regions, their target
genes and functions often remain elusive. This
is commonly referred to as the variant-to-
function (V2F) problem (1, 2).
Recent studies have used statistical fine-

mapping to identify plausibly causal GWAS
variants and functional genomics to find can-
didate cis-regulatory elements (cCREs) and
their putative target genes (3–6). Other studies
have performed CRISPR-based silencing or
mutagenesis screens of noncoding regula-
tory elements to identify target genes (7–9).
Here, we combined these approaches in a
modular workflow, systematic targeted in-
hibition of noncoding GWAS loci coupled
with single-cell sequencing (STING-seq), to
identify target genes at noncoding GWAS loci
using single-cell pooled CRISPR screens. We
first prioritized cCREs by functional annotation

and overlap with fine-mapped GWAS variants.
We then tested for gene-regulatory function
using pooled CRISPR inhibition (CRISPRi) and
single-cell RNA-sequencing and cell surface
protein measurements (Fig. 1A). For a subset
of validated CREs, we also inserted specific
GWAS variants using base editing STING-seq
(beeSTING-seq), which couples base editing
with single-cell multiomics. We demonstrate
the utility of these approaches in blood cell
traits by targeted perturbation of ~500 cCREs
at noncoding GWAS loci, identifying target
genes in cis and trans for 134 of these CREs,
and further explore the effects of 46 fine-mapped
noncoding C-to-T variants using precise var-
iant insertion.

Results
Fine-mapping multiancestry blood trait GWAS to
identify candidate CREs

We elected to study blood cell traits because
of their high polygenicity, links to multiple
common diseases, and the large number of
genotyped individuals available in ancestrally
diverse biobank-scale data repositories with
measured blood traits (10–12). We examined
29 blood trait GWASs in the UK Biobank
(UKBB) and 15 traits from the Blood Cell
Consortium (BCX) (11), including traits from
platelets, red blood cells (RBCs), and white
blood cells (WBCs) (table S1A). The UKBB
GWASs include 361,194 participants with
European ancestries. The BCX multiancestry
GWASs include 746,667 participants (76%
European, 20%Asian, 2%African, 1%Hispanic/
Latino, and 1% South Asian ancestries) with
both multiancestry and individual population
analyses.Weperformed statistical fine-mapping
for the 29 UKBB blood trait GWASs, identifying
a median of 469 conditionally independent

signals and 3328 fine-mapped variants per
trait (13, 14). Multiancestry BCXmeta-analyses
identified a median of 384 conditionally in-
dependent signals and 3586 fine-mapped
variants per trait. Across all BCX population-
specific GWASs, excluding European ancestries,
therewere 42 conditionally independent signals
and 418 fine-mapped variants per trait (table S1,
A and B). In all cases, we found that >90% of
fine-mapped variants were in noncoding re-
gions of the genome.
For our study, we targeted cCREs from dif-

ferent GWASs (543 variants in 254 loci) by
intersecting fine-mapped noncoding variants
with biochemical hallmarks of enhancer activ-
ity, such as chromatin accessibility [assay for
transposase-accessible chromatin sequencing
(ATAC-seq) and DNase I hypersensitivity] and
canonical histone modifications [H3K27ac
chromatin immunoprecipitation sequencing
(ChIP-seq)] from the human erythroid progen-
itor cell line K562. K562 cells are an established
and well-characterized model for blood traits.
In these cells, reporter assays have identified
genetic variants with erythroid-specific effects
(15), transcription factor (TF) occupancy is
strongly conserved with human proerythro-
blasts (16), gene expression and open chroma-
tin profiles are similar to human erythrocyte
progenitors (17), and promoter-interacting re-
gions defined from Hi-C data are enriched for
blood trait GWAS variants (18). The integra-
tion of functional genomic data yielded a large
set of targetable variants fromUKBB and BCX
GWASs (table S1, C and D). The variants that
we selected were often the highest-probability
variant in a fine-mapped GWAS locus (294
variants) or among the 10 most probable var-
iants (249 variants). We also prioritized var-
iants from non-European ancestries. In total,
we selected variants from BCX multiancestry
analyses (339 variants), BCX non-European
ancestries (118 variants), and UKBB European
ancestries (86 variants) (Fig. 1B and table S1,
C to E).

Optimized dual-repressor CRISPRi system

To perturb the selected cCREs, we designed
(table S1F) adual-repressorKRAB-dCas9-MeCP2
system (19) that yielded 50 to 60% greater gene
repression when targeting transcription start
sites (TSSs) or previously described enhancer
loci (7) than a single-repressor (KRAB-dCas9)
system (Fig. 1, C and D; fig. S1; and table S2).
We further characterized the dual-repressor
CRISPRi using a pooled library of ~2000
CRISPR guide RNAs (gRNAs) that target sites
at different distances from the TSSs of ~250
essential genes. We found that dual-repressor
CRISPRi had a focused activity window with
minimal repression beyond 1 kb, and thatmost
of the active gRNAs were located between
–400 and +850 nucleotides (nt) from the TSS
(fig. S2) (20).
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A massively parallel assay to perturb CREs and
find their target genes

We designed STING-seq gRNA libraries to
target each blood trait cCRE with up to three
gRNAs using the dual-repressor CRISPRi
(KRAB-dCas9-MeCP2). These gRNAs were
optimized forminimal off-target activity (21, 22).
We also embedded into the STING-seq library
several control gRNAs: negative (nontargeting)
controls (23), positive controls (targeting highly-
expressed genes at TSSs), and, to estimate the
average number of perturbations per cell
through flow cytometry, multiple gRNAs tar-
geting a gene encoding a ubiquitously expressed
cell surface protein (CD55) (table S3A).
We transduced K562 cells with pooled li-

brary virus at a high multiplicity of infection
(MOI), which we verified by flow cytometry
for CD55 (fig. S3). We then simultaneously
captured four different modalities from single
cells: CRISPR gRNAs, transcriptomes, cell sur-

face proteomes through oligo-tagged anti-
bodies, and cell hashing (table S3B) (24, 25).
We recovered 46,583 single cells with a me-
dian of 13 gRNAs per cell and with each cCRE
targeted in a median of 978 cells (fig. S4, A
and B, and table S3C). To perform differential
expression testing, we recently developed a
conditional resampling approach (SCEPTRE)
that yields state-of-the-art calibration on CRISPR
single-cell datasets to connect perturbations
with changes in gene and protein expression
(26). Using SCEPTRE, we grouped together
gRNAs targeting each cCRE, performing 4627
pairwise tests with a median of seven genes
tested per cCRE within 500 kb for cis effects
(27). We observed good calibration for positive
and negative controls: Nontargeting gRNAs
had no effect, and control genes had decreased
expression or protein levels at a 5% false dis-
covery rate (FDR) (Fig. 2A; fig. S5; and table S3,
C to E). In most cases, target genes in cis for

GWAS variants were more likely to be identi-
fied when both H3K27ac and open chromatin
peaks were present (Fig. 2B).
Of 539 targeted cCREs (from 254 loci), 134

(from 91 loci) had a target gene within 500 kb
(Fig. 2C and table S3F). When examining
gRNAs that target the same CRE, the number
of cells was most directly responsible for
statistical power, and not distance between
gRNAs or predicted off-target effects (fig. S6).
We found minimal differences in target gene
identification when looking at potential cis
effectswithin a smaller (100 kb) or larger (1Mb)
window surrounding the targeted cCRE (table
S3F) (28–30).
Most cis-target genes were also the closest

gene to the variant; however, there were 10
cis-target genes that were the second closest
and eight that were farther away (Fig. 2D).
We identified a single cis-target gene for 116
CREs and identified 18 CREs with two or more
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Fig. 1. Overview of STING-seq. (A) STING-seq pipeline for perturbation and
single-cell analysis of human genetic variants from GWASs. First, plausibly
causal variants are identified using statistical fine-mapping of GWAS. After
further refinement of candidate cCREs using key molecular hallmarks of
regulatory elements, CRISPR gRNAs are designed to target cCREs and
lentivirally transduced at a high MOI into human cells. Using multimodal
single-cell sequencing, target genes for GWAS variants are identified using
differential transcript or protein expression. (B) The number of targeted

GWAS variants mapping to cCREs across 29 blood traits in UKBB (n = 361,194
participants) and 15 blood traits in the BCX (n = 746,667 participants).
(C) Lentiviral CRISPRi vector with a single-effector domain (KRAB-dCas9) or
dual-effector domains (KRAB-dCas9-MeCP2). (D) Mean digital PCR gene
expression in human erythrocyte cells (K562) by targeting the TSSs and
known enhancers of three genes (MRPS23, SLC25A27, and FSCN1) with either
single-effector KRAB-dCas9 or dual-effector KRAB-dCas9-MeCP2 CRISPRi.
Error bars indicate SEM.
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Fig. 2. Mapping cis-regulatory target genes for blood trait GWAS variants.
(A) Quantile-quantile plot of cis effects (within 500 kb) of 531 cCREs (defined
as regions with regulatory hallmarks ATAC/DHS or H3K27ac) overlapping
535 GWAS variants (GWAS-cCREs), 41 GWAS variants without CRE hallmarks,
and 32 nontargeting (NT) gRNAs. Genes for NT tests were randomly sampled
from the set of genes in cis for targeting gRNAs. We identified 154 pairs of target
genes and CREs for GWAS variants with CRE hallmarks, one target gene-CRE pair
for GWAS variants without CRE hallmarks, and no target genes with NT gRNAs
significant at a 5% FDR (Benjamini-Hochberg–adjusted SCEPTRE P value).
(B) Targeted GWAS-cCREs with and without target genes detected and their
functional hallmarks of enhancer activity (ATAC/DHS or H3K27ac) in K562 cells.
(C) Volcano plot of cis-regulatory effects. Significant pairs of genes and
GWAS-CREs are indicated in red. (D) Distance to gene rank for GWAS-CREs and
target genes, where genes were ranked according to closest TSS to a given
GWAS-CRE. (E) Number of target genes in cis per GWAS-CRE. (F) Top: For a

multiancestry corpuscular volume locus, two fine-mapped variants were targeted,
the lead variant, rs4845124 (blue), and rs12140898 (red). MAPKAPK2 (green)
was nominated as the target gene by fine-mapped blood cell eQTLs for both
variants. Bottom: rs12140898 mapped to a K562 HiChIP loop connecting its
GWAS-CRE to the MAPKAPK2 promoter. (G) Single-cell gene expression for cells
with gRNAs targeting GWAS-cCREs (rs4845124 or rs12140898) or NT. Only
rs12140898 had a target gene within 500 kb, MAPKAPK2. (H) For a multiancestry
monocyte count locus, one fine-mapped variant was targeted, the lead variant,
rs741613 (red). ZNF593, SH3BGRL3, CD52, and CRYBG2 (green) were nominated
as target genes by fine-mapped blood cell eQTLs. (I) Single-cell gene expression
for cells with gRNAs targeting the GWAS-cCRE rs741613 or NT. CD52 and
ZNF593 were both identified as target genes. (J) Single-cell protein expression
for cells with gRNAs targeting the GWAS-cCRE rs741613, the CD52 TSS, or
NT. Asterisks denote significant q values, Benjamini-Hochberg–adjusted
SCEPTRE P values (*q < 0.05, **q < 0.01, ***q < 0.001).
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cis-target genes (Fig. 2E). We also targeted
41 variants that were the most plausibly causal
variants at their respective loci but did not
overlap biochemical hallmarks of enhancers.
From the 41 variants we targeted that did not
overlap called peaks for biochemical hall-
marks of enhancers, there was one variant
(rs106585 for WBC counts) with a significant
target gene, LTBR [log2 fold-change (FC) =
–0.38, SCEPTRE P = 3.1 × 10−7] (Fig. 2A,
fig. S7, and table S3G). Upon further inspec-
tion, we found a weak enhancer-associated
histone modification (H3K27ac) at this locus
despite the lack of a called peak, suggesting
that biochemical hallmarks of enhancer activ-
ity are required and that spurious signals from
inactive chromatin are rare (fig. S8).
We next sought to characterize concordance

between cis-target genes identified using STING-
seq and other methods such as physical con-
tact mapping and allele-specific expression.
To identify gene promoters anchored in three-
dimensional space to H3K27ac-bound chroma-
tin, we generated H3K27ac HiChIP libraries in
K562 cells. Of the 134 STING-seq CREs and
their 124 target genes, we observed 32 CREs
in which the same gene was identified with
H3K27ac HiChIP contacts, 27 CREs in which
the same gene was identified through expres-
sion quantitative trait loci (eQTL) mapping of
the same fine-mapped variant (31), and 73
CREs in which the same gene was identified
through a transcriptome-wide association study
(TWAS) of a blood trait (32). Although the sen-
sitivity of TWAS for target gene identification
is reasonably high (54%), we and others have
found that specificity can be low using this
approach (33). Additionally, 54 CREswith fine-
mapped GWAS variants had allele-specific ef-
fects on enhancer activity or TF binding (34, 35),
suggesting that these variants are causal at their
respective CREs (table S3F).

Identification of causal variants and their impact
on gene and protein expression

In the STING-seq dataset, we identified ex-
amples in which multiple lines of orthogonal
evidence converged to explain how a CRE
regulates a cis-target gene. For example, the
lead variant (rs4845124) at a locus associated
with mean corpuscular volume in multiances-
try meta-analyses (GWAS P = 6.9 × 10−17) was
fine-mapped as plausibly causal (in the 95%
credible set with posterior probability ≥ 1%);
however, upon CRISPR inhibition of the cCRE,
there was no target gene (Fig. 2, F and G).
Fine-mapping of this locus nominated a sec-
ond plausibly causal variant mapping to a
cCRE (rs12140898), and its inhibition identi-
fied MAPKAPK2 as the target gene (log2 FC =
–0.64, SCEPTRE P = 2.2 × 10−16). Both variants
were fine-mapped eQTLs for MAPKAPK2 in
neutrophils. However, only rs12140898 had
predicted allele-specific effects on SPI1 binding

and mapped to a HiChIP contact domain for
theMAPKAPK2 promoter. Therefore, although
eQTL studies nominated the correct target
gene for this locus, it was through experimen-
tal CRE to gene mapping that we pinpointed the
most likely causal GWAS variant. Most of the
targeted GWAS variants did not have support-
ing evidence from eQTL data but were within
proximity (500 kb) of a TWAS gene, demon-
strating that we can uncover genes that may
be underpowered by eQTL mapping and refine
TWAS results that may have high false-positive
rates (table S3F) (33).
To disentangle loci withmultiple target genes

in cis, we can combine targeted CRE inhibition
and gene inhibition. For example, the lead
variant (rs7416513) at a locus associated with
monocyte count in multiancestry meta-analyses
(GWAS P = 3.8 × 10−32) was fine-mapped as
plausibly causal (Fig. 2H). This variant maps to
an intergenic region between the gene bodies
of CRYBG2 and CD52, and the gene with the
closest TSS isUBXN11. Given this, it is unclear
which of these genes, if any, might be the
target gene. The variant is also a fine-mapped
blood cell eQTL formultiple genes in the locus
(CD52, CRYBG2, SH3BGRL3, and ZNF593), fur-
ther obscuring the target gene. Upon inhibit-
ing the rs7416513-CRE, we detected CD52 as
themost significantly altered gene (log2 FC =
–1.6, SCEPTRE P = 2.2 × 10−16) (Fig. 2I), and
ZNF593 also had a weak change in expression
(log2 FC = 0.04, SCEPTRE P = 1.3 × 10−3), with
no effect on SH3BGRL3 or CRYBG2. Directly
targeting CD52 does not influence ZNF593
(SCEPTREP= 0.65) expression, suggesting the
rs7416513-CRE has a pleiotropic regulatory ef-
fect on multiple genes.
Using single-cell proteomics, we also detected

a significant decrease in cell surface CD52
protein expression upon rs7416513-CRE inhi-
bition (log2 FC = –0.1, SCEPTRE P = 1.2 × 10−15)
(Fig. 2J), demonstrating that CREs with GWAS
variants modulate not only cis-target gene
expression but also protein expression. CD52
protein can be targeted with alemtuzumab to
improve clinical outcomes in patients with
myelodysplastic syndrome, suggesting that
this may be the causal gene for the monocyte
count GWAS association (36). The rs7416513-
derived C allele is associated with increased
monocyte count inmultiancestrymeta-analyses
(GWAS effect = 0.025, P = 3.8 × 10−32) (11) and
also with increased CD52 expression in mono-
cytes (eQTL estimate = 0.71, P = 4.5 × 10−31) (37),
highlighting the power of STING-seq to connect
variants to druggable genes and identify those
variants that may affect response to drugs such
as alemtuzumab.

Target gene discovery in STING-seq using
non-European and multiancestry GWASs

Historically, most GWAS loci have been iden-
tified using individuals of European ancestry

(38). Recent efforts to use non-European an-
cestries and to combine multiple ancestries for
GWASs have yielded numerous new associ-
ations (11, 39, 40). By leveraging ancestry-
specific andmultiancestry GWASs, we increased
the discovery space of CREs and target genes
for STING-seq. We identified 16 CREs with
cis-target genes from GWAS variants in non-
European ancestries. For example, we iden-
tified ATP1A1 as the target gene for a locus
associated with neutrophil counts exclusively
in African ancestries (fig. S9, A and B). The
lead variant (rs6674304) was fine-mapped as
plausibly causal in individuals with African
ancestries (GWAS P = 3.4 × 10−44) but not in
individuals with European ancestries (GWAS
P = 0.58). Although rs6674304 did not map to
any cCREs, statistical fine-mapping nomina-
ted three additional variants that did map to
cCREs (rs6660743, rs12087680, and rs7544679)
(fig. S9A). We targeted all three variants using
STING-seq and found that targeting the
rs12087680-CRE revealed the cis-target gene
ATP1A1 (log2 FC = –0.35, SCEPTRE P = 2.0 ×
10−10) (fig. S9B). ATP1A1 maintains electro-
chemical gradients of sodium and potassium
ions, and prior work has linked both ATP1A1
and neutrophil counts with hypertension (41–43).
As the ATP1A1 CRE demonstrates, STING-
seq using non-European and multiancestry
GWAS can identify new trait genes.

A pleiotropic CRE in the APOE and APOC1 locus

In a minority of STING-seq CREs, we iden-
tified multiple cis-target genes that may occur
through direct regulation of multiple genes or
indirect effects on other nearby genes driven
by a single cis-target gene. These outcomes can
be difficult to distinguish without additional
perturbations or a known gene-regulatory
network. For example, we found that rs1065853
was the lead variant and fine-mapped as
plausibly causal for an immature RBC trait
(high light scatter reticulocyte percentage) at
its locus (GWAS P = 5.8 × 10−48) (fig. S9C).
This variant mapped to an intergenic region
between the gene bodies ofAPOE andAPOC1,
with APOE being the closest gene, and was
also associated with high- and low-density
lipoprotein levels (44). Upon inhibiting the
rs1065853-CRE, we observed significant de-
creases in expression for both APOE (log2
FC = –0.63, SCEPTRE P = 2.8 × 10−6) and
APOC1 (log2 FC = –0.27, SCEPTRE P = 3.5 ×
10−6) (fig. S9D). Previous studies have shown
that APOE and APOC1, which encode apoli-
poproteins E and C1, respectively, influence
blood lipids and diverse ailments including
cardiovascular disease and Alzheimer’s dis-
ease (45, 46). To help distinguish direct and
indirect regulation, we used a prior genome-
wide Perturb-seq (GWPS) study in the same
cell line (K562) to determine whether APOE
or APOC1 regulate one another (47). APOC1
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expression was unchanged upon APOE inhi-
bition (GWPS z = 0.02), but APOE expression
was decreased uponAPOC1 inhibition (GWPS
z = –1.4). APOE and APOC1 direct inhibition
suggests that rs1065853-CREmay target either
APOC1 alone (even though APOE is the closest
gene) or bothAPOC1 andAPOE. Because these
genes work in a coordinated fashion to reg-
ulate lipid metabolism (48), the co-regulation
of these genes is a notable observation of
regulatory pleiotropy that may contribute to
trait associations.

Targeting multiple CREs in the PTPRC
locus reveals nonfunctional linkage
disequilibrium proxies

We also examined loci with several fine-
mapped variants near a single gene. At the
PTPRC locus, we targeted nine variants that
were fine-mapped variants for 10 traits (fig.
S10A and table S1E) and mostly not in strong
linkage disequilibrium (LD), as quantified by
pairwise R2 from 1000 Genomes (49) (fig.
S10B). The nine variants mapped to distinct
cCREs: One was 5 kb before the PTPRC TSS
and the remaining eight were in the first
intron, from 2 to 42 kb after the TSS (fig.
S10C). We observed modulation in PTPRC
when targeting six of the cCREs (fig. S10D).
For the cCREs with no effect, we found that
two variants were in high LD (R2 ≥ 0.95)
with variants mapping to PTPRC CREs, sug-
gesting that these may be nonfunctional
variants in LD with functional variants (i.e.,
nonfunctional LD proxies). For all CREs,PTPRC
was the only significant target gene and thus is
very likely the causal GWAS gene (table S1E).
The high allelic heterogeneity, which is

driven by multiple independent regulatory
variants in distinct CREs modulating PTPRC
expression, and the 10 blood trait associations
suggest that the CREs may have cell type–
specific activity. That is, different CREs may
regulate PTPRC in different contexts, given
that the 10 trait associations include RBCs,
WBCs, and platelet traits (fig. S10A).
We found that experimental evidence (e.g.,

STING-seq) is required to link these CREs to
PTPRC expression. None of the targeted var-
iantswere fine-mapped blood eQTLs, and only
a single targeted variant, rs1326279, showed
evidence of allele-specific effects on TF bind-
ing (31, 35). Thus, in silico methods that use
eQTL data are insufficient to measure the
impact of the CREs on PTPRC expression.

Direct GWAS variant insertion with
beeSTING-seq

Next, we sought to expand the STING-seq ap-
proach to precise insertion of fine-mapped
GWAS variants with base editing. We fused a
cytosinebase editor (FNLS-BE3) to aprotospacer-
adjacent motif (PAM)–flexible Cas9 variant
(SpRY) (table S1F) and validated activity using

gRNAs designed to disrupt splice junctions in
CD46, which encodes a ubiquitously expressed
cell surface protein, in an arrayed fashion (Fig.
3, A and B, and table S3H) (50, 51). We ob-
served up to ~70% knockdown of CD46 when
targeting splice sites with diverse PAM se-
quences and an average knockdown of 27%
(n = 12 target sites), similar to prior pooled
screens using base editing (52, 53), (fig. S11
and table S3H). We then performed a single-
cell pooled base editing screen (beeSTING-
seq) targeting 46 C>T fine-mapped GWAS
variantsmapping to 42 STING-seq–identified
CREs with three gRNAs each (table S3I). We
tested for direct effects on known target
genes and found that 32 of 46 had at least
two gRNAs with concordant effects and that
all three gRNAs had concordant effects for 17
variants (Fig. 3C and table S3, J and K). We
identified three sets of beeSTING-seq gRNAs
with cis-regulatory effects on the same target
genes identified using STING-seq (5% FDR)
with no enrichment of nontargeting (nega-
tive control) gRNAs (Fig. 3D and table S3, L
and M).
In one case, beeSTING-seq gRNAs targeted

the lead variant (rs142122062) at a locus asso-
ciated with RBC volume in multiancestry meta-
analyses (GWAS P = 8.2 × 10−11) (Fig. 3E
and table S3M). Targeted inhibition of the
rs142122062-CRE decreased APPBP2 expres-
sion (log2 FC = –0.46, SCEPTRE P = 2.5 × 10−4)
and identified it as the target gene for this
locus (Fig. 3F). For beeSTING-seq, we were
able to design multiple gRNAs capable of in-
serting the same single-nucleotide edit by
capitalizing on the targeting flexibility of
SpRY Cas9 (51). With direct insertion of the
rs142122062-T allele with two independent
gRNAs, we observed a significant increase
in APPBP2 expression (combined log2 FC =
0.74, SCEPTRE P = 7.6 × 10−5) (Fig. 3G),
demonstrating the ability of beeSTING-seq
to identify GWAS variants that act to increase
expression. Both gRNAs exclusively edit the
GWAS variant, because it is the only C nu-
cleotide within the editing window (50). Using
TWAS, we found that amyloid precursor pro-
tein, which APPBP2 binds, had the strongest
association with RBC counts (54), suggesting a
possible mechanism of how altered APPBP2
expression affects RBC traits. In this manner,
beeSTING-seq can more precisely determine
the effect of GWAS variants, moving beyond
CRE inhibition to reveal the impact of specific
alleles on target gene expression.

CRE-driven, dosage-dependent, transcriptome-wide
changes in gene expression

To understand the impact of GWAS-CREs on
gene expression across the genome, we per-
formed transcriptome-wide differential expres-
sion tests. We applied a strict (1%) FDR to
identify target genes in trans and again found

good calibration with nontargeting gRNAs
(Fig. 4A and table S3C). We observed trans
effects for CREs that targeted in cis the TFs
GFI1B, NFE2, IKZF1, HHEX, and RUNX1 and
the host genes of microRNAs (miRNAs)miR-
142 and miR-144/451 (Fig. 4A and tables S3F
and S4A). These TFs and miRNAs are known
to play key roles in hematopoietic stem cell
differentiation (55–61).
For GFI1B, we identified two independent

CREs with trans effects. One variant (rs524137),
associated with monocyte percentage and baso-
phil counts, maps to an intergenic CRE 11.5 kb
downstream of GFI1B (Fig. 4B). The other var-
iant (rs73660574), associated with several RBC
traits (mean sphered corpuscular volume, im-
mature reticulocyte fraction, mean reticulocyte
volume, and mean corpuscular hemoglobin),
maps to a CRE in an intron of GFI1B (Fig. 4B).
These CREs exhibited independent dosage ef-
fects on GFI1B expression, with the rs524137-
CRE having an ~70% stronger effect than the
rs73660574-CRE. Thus, perturbing either
rs73660574- or rs524137-CREs led to changes
in the expression of GFI1B (Fig. 4C) and its
target genes. To better understand the trans
effects of these twoGFI1BCREs, we examined
gene-expression changes in all 1161 differ-
entially expressed genes identified from the
rs524137-CRE (Fig. 4D). For these genes, we
observed a high correlation between pertur-
bations targeting each CRE (r = 0.84), even
though many of the gene expression changes
were more modest when perturbing the
rs73660574-CRE. We found a linear dosage
relationshipbetween the trans-regulatory effects
for the CREs that agreed with the difference in
their effect on cis (GFI1B) expression (~1.3-fold)
(Fig. 4, C and D). Using single-cell proteomics in
the same cells, we observed changes in protein
levels for nine of the genes in the GFI1B
network; for these, changes in transcript ex-
pression and protein levels were highly cor-
related (r = 0.9) (fig. S12). This example
demonstrates how GWAS variants mapping
to CREs perturb regulatory networks, and that
these changes at the RNA level also alter pro-
tein expression.
In addition to GFI1B, we also observed CRE

dosage effects on target gene expression and
regulatory networks for NFE2 (rs79755767,
associated with hematocrit and red cell dis-
tribution width, and rs35979828, associated
with eosinophil count, mean corpuscular he-
moglobin, and monocyte count) (Fig. 4E).
When targeting these variants, we observed
dosage effects onNFE2 expression (rs79755767-
CRE log2 FC = –1.1, SCEPTRE P = 2.2 × 10−16;
rs35979828-CRE log2 FC = –0.6, SCEPTRE P =
2.2 × 10−16) (Fig. 4F) and on a 343-gene reg-
ulatory network (r = 0.78) (Fig. 4G). These re-
sults reinforce our findings that fine-mapped
GWAS variants at independent CREs have
independent effects, not only on target gene
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expression, but also on entire regulatory networks
in trans.
A limitation of many GWAS functional

interpretation approaches is that they focus
on nearby protein-coding genes and overlook
relevant noncoding RNAs. With STING-seq,
we also identified regulatory networks for
miRNAs, which can have a broad impact on
gene regulation. For example, STING-seq at
the CRE for rs2526377, the most plausibly
causal variant for a locus associated with
platelet count locus, revealed no protein-coding
cis-target genes (fig. S13A). However, when ex-
amining noncoding transcripts, we found a
differentially expressed noncoding transcript,
AC004687.1, which is also known as themiR-
142 host gene (log2 FC = –1.8, SCEPTRE P =
2.2 × 10−16) (fig. S13B). This finding is further
supported by prior work in the context of
Alzheimer’s disease showing that the risk allele
decreasesmiR-142 host gene promoter activity
(62, 63).
For STING-seq perturbation of rs2526377,

wedetected a 119 gene trans-regulatorynetwork
(fig. S13C). The top up-regulated genes within
the rs2526377 trans-regulatory network (WASL
and CFL2) were also the top up-regulated genes
in miR-142 knockout mice (60). This lends
further support that the trans-regulatory ef-
fects of rs2526377 perturbation are caused by
cis effects onmiR-142, as found in STING-seq.
This cis-target miRNA and its regulatory
network can be easily missed when consid-
ering only protein-coding genes for target
gene annotation.
We also analyzed trans effects with direct

variant insertion using beeSTING-seq.We could
detect changes in regulatory network expression
in the expected direction upon inserting the
rs12784232-A allele (associated with lymphocyte
percentage) and the rs6592965-A allele (corpus-
cular hemoglobin), whichmapped to theHHEX
and IKZF1GWAS-CREs, respectively. In contrast
to GWAS-CRE inhibition, which decreased ex-
pression of HHEX and IKZF1 (Fig. 4A), direct
variant insertion resulted in increased ex-
pression of the cis-target genes and, accord-
ingly, trans effects for genes tended to switch
directions in differential expression compared
with STING-seq. Specifically, we observed that
60 to 70% of HHEX and IKZF1 network genes
had reversed directions of effect, demonstrat-
ing that GWAS variants that act to increase
expression can affect networks in discordant
directions from CRE silencing.

Enrichment of cis-target binding sites and
GWAS genes in trans-regulatory networks

To better characterize how CREs with target
genes in trans alter blood cell phenotypes, we
examined genome-wide binding for GFI1B,
NFE2, IKZF1, and RUNX1 (ChIP-seq) (64, 65)
and sequence-based predicted targets of miR-
142 and miR-144/451 (TargetScan) (66, 67).
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Fig. 3. Precise GWAS variant editing with beeSTING-seq. (A) Lentiviral CRISPR base editor (FNLS-BE3) with a
relaxed PAM SpCas9 variant, SpRY, for beeSTING-seq. (B) Flow cytometry of CD46 cell surface protein after base
editing at CD46 splice donor sites. CD46 knockdown was compared with untransduced and NT controls. (C) Target
gene fold change for the two gRNAs with the most concordant effects for each variant. (D) Quantile-quantile plot of
NT gRNAs and gRNAs targeting 46 fine-mapped GWAS variants mapping to STING-seq GWAS-CREs with cis-effect
genes. Genes for NT tests were randomly sampled from the set of genes in cis for targeting gRNAs. (E) Top: For a
multiancestry corpuscular volume locus, one fine-mapped variant was targeted, the lead variant, rs142122062 (blue).
Bottom: Base editing by gRNA-1 and gRNA-2 changes the rs142122062 allele from reference to alternative; for both
gRNAs, this is the only cytosine in the base editing window. (F) Single-cell gene expression for cells with gRNAs
targeting the GWAS-cCRE rs142122062 or NT. APPBP2 was identified as a cis-target gene. (G) beeSTING-seq of
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significant q values, Benjamini-Hochberg–adjusted SCEPTRE P values (*q < 0.05, **q < 0.01, ***q < 0.001).
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We investigated whether the closest genes to
each ChIP-seq peak or predicted miRNA tar-
get genes were enriched in STING-seq trans-
regulatory networks (Fig. 4H and table S4B).
We observed enrichments of predicted target
genes for GFI1B, NFE2, IKZF1, RUNX1, and
miR-142 (odds ratio = 2.4 ± 1.9, mean ± SEM)
(Fig. 4I and table S4C). Thus, perturbing CREs
can reveal second-order interactions for regu-
latory networks driven by TFs or miRNAs.
A related and pertinent question is whether

the genes in the trans-regulatory networks iden-
tified by STING-seqmay also play a role in blood
traits and if they also harbor cis-regulatory ge-
netic variants. To answer this question, we con-

structed a set of putatively causal genes for each
of the 29UKBB and 15 BCXGWASs by selecting
the closest protein-coding genes to fine-mapped
variants of GWAS loci. We then grouped them
by cell type, generating gene sets for platelets,
RBCs, and WBCs that were mostly distinct
(fig. S14 and table S4B). For nearly all trans-
regulatory networks, we found enrichments
for blood cell GWAS genes (Fig. 4J and table
S4C). These blood cell trait GWAS loci en-
richments indicate that the known roles of
these genes in hematopoiesis and cell differ-
entiation are mediated by their effects on
regulatory networks. Furthermore, identification
of the trans genes with STING-seq pinpointed

regulatory networks for which polygenic per-
turbation by distinct variants across the genome
appears to contribute to the GWAS signal. This
suggests amechanistic importance for networks
themselves, for which we do not need to func-
tionally determine V2F per locus if we know the
pathway through which they are likely to act,
similar to recent work focusing on perturbation
of target genes (68).

Trans-regulated genes reveal biological
mechanisms and cell types of trait associations

Given these relationships between trans-regulated
genes and GWAS loci, we analyzed the struc-
tures of these regulatory networks to better
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blood cell traits. (A) Quantile-quantile plots of trans effects (whole
transcriptome) of GWAS-CREs and NT gRNAs. We identified significant genes
at a 1% FDR (Benjamini-Hochberg–adjusted SCEPTRE P value) for GWAS-
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and miR-144/451) as cis-regulatory target genes. No trans effects were
found for NT gRNAs. (B) Two GWAS-CREs targeted at the GFI1B locus,
rs524137 and rs79755767. (C) Single-cell gene expression for cells with
gRNAs targeting GWAS-cCREs at the GFI1B locus (rs524137 or rs79755767)
or NT. (D) Expression of rs524137-CRE significant trans-target genes in cells
with perturbation of either GWAS-CRE at the GFI1B locus (rs524137 or
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blood traits. Asterisks: (C) and (F), significant Benjamini-Hochberg–adjusted
SCEPTRE P values; (I) and (J), logistic regression P values (*P < 0.05, **P <
0.01, ***P < 0.001).
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Fig. 5. Subnetworks of GFI1B target genes are expressed in specific hema-
topoietic progenitors and differentiated cells. (A) Coexpression matrix of
rs524137-CRE GFI1B network genes in K562 with hierarchical clustering. Three
clusters (A, B, and C) are indicated. The vertical bars below the dendrogram
indicate if genes had increased (blue) or decreased (red) expression upon
inhibiting the GFI1B CRE. (B) For each trans-regulatory GFI1B subnetwork
(cluster), gene set enrichment odds ratios (diamonds) and 95% confidence
intervals (lines) of closest genes to GFI1B K562 ChIP-seq peaks (top) and fine-
mapped variants (bottom) from WBC, platelet, and RBC GWASs from 29 UKBB

blood traits and 15 BCX blood traits. Asterisks denote logistic regression P values
(*P < 0.05, **P < 0.01, ***P < 0.001). (C) UMAP of human bone marrow cell
gene expression from 35 Human Cell Atlas donors. Labels and colors indicate
cell types. B 2prog, progenitor B-2 cells; RBCprog, RBC progenitors; DCprog,
dendritic cell progenitors (for full list, see table S4D). The black dots denote
cells expressing GFI1B. GFI1B is most highly expressed in RBC progenitors,
megakaryocyte progenitors, and hematopoietic stem cells. (D) Expression of
genes from clusters A, B, and C in each human bone marrow cell type (left) and
in each cell in the UMAP space from (C) (right).
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understand the mechanistic roles of specific
genes in blood traits. Using single-cell gene
coexpression and clustering, we identified
coexpressed gene clusters for each of the loci
(Fig. 5A and fig. S15). For the trans-acting
gene GFI1B, we identified two clusters (A and
B) of genes with increased expression upon
GFI1B CRE repressionwith STING-seq. These
clusters were the most strongly enriched for
GFI1B binding sites (Fig. 5B and table S4, B
and C). A third cluster (C) consisted primarily
of genes with decreased expression, which
were not enriched for GFI1B-binding sites.
Clusters A and B were enriched for genes
from platelet andWBC GWASs, whereas clus-
ter C was only enriched for genes from RBC
GWASs.
To further refine and validate the individual

cell types involvedwith different clusters of co-
regulated genes, we integrated the GFI1B co-
expression network with primary cells from
the Human Cell Atlas, which includes pro-
genitors and/or differentiated cell types for
platelets, WBCs, and RBCs. Specifically, we
used single-cell RNA sequencing from 35 bone
marrow donors (69, 70), because bonemarrow
includes a rich sample of multipotent progen-
itor cells crucial for hematopoiesis. We first
confirmed that GFI1B was expressed in hema-
topoietic stem cells and progenitor cells for
RBCs and megakaryocytes, consistent with
GFI1B’s well-established role as a transcrip-
tional repressor in early and lineage-specific
progenitors (Fig. 5C) (55, 71–73). As expected,
GFI1B was not expressed in granulocytes and
lymphocytes (73, 74). Genes from cluster A
were highly enriched for GFI1B-binding sites
and had increased expression upon inhibit-
ing GFI1B, suggesting that these genes are
actively repressed in cells in which GFI1B is
expressed (Fig. 5B). We next observed that
genes from cluster A were highly expressed in
granulocyte-monocyte progenitors and dif-
ferentiated WBC types, including monocytes
and dendritic cells (Fig. 5D and table S4D).
For example, CD33 is a well-known marker
for myeloid cells that is commonly used to
diagnose acute myeloid leukemia, and its
expression increases upon inhibiting the
GFI1B CRE (fig. S12) (75, 76). GFI1B directly
binds the promoter of CD33 (fig. S16A) and,
upon inhibiting GFI1B, we found that CD33
transcript and protein expression were both
increased (fig. S16, B and C). CD33 is ex-
pressed in myeloid progenitors and differenti-
ated cells such as dendritic cells or monocytes
(fig. S16D). Overall, cluster A is composed of
genes that GFI1B directly represses, along with
their downstream targets, to prevent differenti-
ation of hematopoietic stem cells into WBCs.
Like cluster A, genes in cluster B were also

enriched for GFI1B-binding sites and had in-
creased expression upon inhibiting GFI1B (Fig.
5, A and B). However, genes in cluster B were

not expressed in differentiated WBCs, but ra-
ther in a broad set of progenitor cell types (Fig.
5D), suggesting that these may be genes that
are repressed in hematopoietic stem cells to
maintain a multipotent cell state. Cluster C
differed from clusters A and B in that it was
not enriched for GFI1B-binding sites and had
decreased expression upon inhibiting GFI1B.
Genes in cluster C were expressed most highly
in RBC progenitors, suggesting that these genes
are secondary targets of GFI1B that act in a
lineage-specific manner to differentiate hema-
topoietic stem cells into erythrocytes. These
findings are supported by this cluster being
enriched for RBC GWAS genes (Fig. 5B), and
pathway analysis identifying these genes as part
of the heme biosynthesis pathway (table S4E).
The identification of these trans-regulatory net-
works in a homogeneous blood progenitor–
like cell type (K562) demonstrates the utility of
STING-seq in studying diverse effects of CREs
on target genes.

Trade-offs between CRE effect sizes, number of
cells, and sequencing depth in STING-seq

Given the large number of GWASs performed
over the past 15 years, with numbers of trait-
associated loci per GWAS ranging from tens
to thousands (44), we wanted to understand
the scale of cells needed to perform STING-seq
under various settings. By performing statisti-
cal down-sampling experiments on the cis-
regulatory effects identified by STING-seq,
we computed the number of cells required
for nominal significance (SCEPTRE P < 10−3)
for target genes with different expression
levels, different CRE perturbation effect sizes,
and different per-cell sequencing depths (fig.
S17). For CREs with large effects, STING-seq
requires as few as 100 cells and 5000 reads per
cell, comparable to methods such as Perturb-
seq and ECCITE-seq which target genes di-
rectly (47, 68, 77, 78). For CREs with moderate
effects, STING-seq requires about 400 cells per
gRNA or, if the cell number is fixed at 100 cells,
15,000 reads per cell. This down-sampling
analysis provides a useful set of guidelines
for estimating the resources required for ap-
plying STING-seq to other GWASs beyond
blood traits.

Discussion

We have developed an approach for the char-
acterization of functional effects of GWAS loci
that takes noncoding human genetic variants
and integrates fine-mapping, pooled CRISPR
screens and single-cell RNA and protein se-
quencing to identify target genes in cis and
trans. We have demonstrated the utility of
STING-seq to identify target genes of CREs
overlapping GWAS variants and described
complex regulatory architectures of CREs.
We found that 77% of blood trait GWAS loci
have at least one fine-mapped variant over-

lapping an enhancer region and can be tar-
geted with STING-seq. We identified target
genes for 25% of tested cCREs and 36% of
tested loci, a high yield over previous studies
on the regulatory effects of noncoding ge-
nomic loci (7, 8). We also found that CRE
activity is needed for CRISPRi-based target
detection, and that spurious signals from
inactive chromatin are rare. Additionally,
we identified CREs with GWAS variants for
TFs and miRNAs and, through their per-
turbation, identified trans-regulatory network
clusters with distinct biological functions. The
enrichment of genes in independent blood
cell trait GWAS loci in these networks im-
plies a polygenic contribution to the cellular
functions that underlie diverse blood cell
traits. We also identified target genes for
non-European associations for which func-
tional genomics data are typically sparse. For
example, we nominated ATP1A1 as a causal
gene for neutrophil counts by targeting a
locus identified exclusively in African ances-
tries. Targeting loci identified from ancestry-
specific GWASs in cell models is ancestry
agnostic if the GWAS variant maps to a can-
didate regulatory element and can lead to
target gene identification.
We also performed direct variant insertion

with beeSTING-seq, identifying noncoding
GWAS variants with causal effects on target
gene expression. Given the incomplete edit-
ing efficiencies [with many studies reporting
~30% (79)], the fact that the biological effect
of individual GWAS variants is expected to
be small, and that single-cell transcriptome
data are sparse, it was not unexpected that
we were only able to identify few loci, and
future work is needed to further optimize
base editors for studying the effects of GWAS
variants. Targeted enrichment panels will have
utility in improving the sparsity of single-cell
sequencing; however, further innovation will
be necessary to improve base-editing efficiency
through directed evolution of existing base
editors and the discovery of additional ones.
However, the trade-off between higher yield
from blunt perturbations such as CRISPRi
versus highly precise base editing with smaller
functional effects is likely to persist, and the
ideal approach depends on the goals and
design of each study.
A key feature of recent CRISPRi screens of

cCREs (7, 8), including STING-seq, is the intro-
duction of multiple perturbations per cell.
This substantially increases the number of loci
that can be feasibly analyzed. Although this is
feasible for immortalized cell lines, expanding
multiple perturbations (using either highMOI
transduction or innovative vector designs) to
other cell lines and primary cells will be instru-
mental for the next stage of target gene iden-
tification and characterization for diverseGWAS
traits. However, caution is warranted in study
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designs in which a large proportion of gRNAs
are likely to have trans effects, because their
potential interactions may complicate inter-
pretation of the data. In these cases, reducing
the number of perturbations per cell may be
necessary.
Our results demonstrate the power of single--

cell sequencing for sensitive and scalable
readout of regulatory effects of GWAS loci in
cis and trans. Although we have a high yield
in cis target gene discovery, identification of
a cis gene alonewith STING-seq does not prove
its mechanistic causal role driving the GWAS
association, nor does it exclude other potential
causal variants, CREs, and genes, including in
other cell types. Indeed, our observation of
multiple CREs with highly correlated cis and
trans effects but GWAS associations for dif-
ferent blood traits suggests that theymight have
distinct additional effects in other cellular con-
texts. In loci inwhich cis effects are coupledwith
trans-network effects, STING-seq can be highly
informative of potential cellular mechanisms,
which also provides strong support for the
causal role of the cis-target gene. Given these
network enrichments, we suggest that GWAS
loci that putatively target TFs or miRNAs
should be high-priority targets for STING-seq
given the wealth of information that we could
gain. Furthermore, integration of STING-seq
with cellular phenotype screens (80–82) will
be an invaluable next step to connecting gene-
tic variants with cellular mechanisms driving
GWAS associations.
The STING-seqworkflowprovides a roadmap

to addressing V2F challenges and identifying
target genes for GWAS loci in a high-throughput
fashion, enabling a deeper understanding of
human noncoding genome function and trans-
lation of these insights into new therapies.

Materials and Methods
UKBB genome-wide association studies of blood
cell traits

UKBB data were used upon ethical approval
from the Northwest Multi-Centre Research
Ethics Committee, and informed consent was
obtained from all participants before partici-
pation. We used GWAS summary statistics for
29 blood cell traits from 361,194 white British
UKBB participants: WBC (leukocyte) count,
RBC (erythrocyte) count, hemoglobin concen-
tration, hematocrit percentage,mean corpuscular
volume, mean corpuscular hemoglobin, mean
corpuscular hemoglobin concentration, RBC
(erythrocyte) distribution width, platelet count,
platelet crit,mean platelet (thrombocyte) volume,
platelet distribution width, lymphocyte count,
monocyte count, neutrophil count, eosinophil
count, basophil count, lymphocyte percentage,
monocyte percentage, neutrophil percentage,
eosinophil percentage, basophil percentage, re-
ticulocyte percentage, reticulocyte count, mean
reticulocyte volume,mean sphered cell volume,

immature reticulocyte fraction, high light scat-
ter reticulocytepercentage, andhigh light scatter
reticulocyte count (table S1A). Each GWAS was
performed by fitting the following covariates to
inverse normal transformed traits with linear
regression models: Principal components
1 through 20, sex, age, age2, sex and age inter-
action, and sex and age2 interaction. The sum-
mary statistics were generated by the Neale
Lab (www.nealelab.is/uk-biobank).

Statistical fine-mapping of UKBB blood
cell traits

The 29 UKBB GWASs of blood cell traits were
uniformly processed with a statistical fine-
mapping pipeline. First, each GWAS was
analyzed with GCTA-COJO v.1.93.1 (13, 14)
to identify conditionally independent lead
variants (COJOP< 6.6 × 10−9) and define 1-Mb
regions for statistical fine-mapping. All vari-
ants within 500 kb of a lead variant were
analyzedwith FINEMAP v.1.3.1 (83), a Bayesian
fine-mappingmethod that assigns each variant
a Bayes factor for being plausibly causal. Both
GCTA-COJO and FINEMAP require population--
matched covariancematrices, so we generated
these with PLINK v.2.0 (84), QCTOOL v.2.0.2,
BGENIX v.1.1.5 (85), and LDstore v.1.1 (86)
using a subset of 50,000 UKBB white UK par-
ticipants (UKBB accession code 47976). FINE-
MAP allows for a maximum number of causal
configurations to test for each input set of
variants, so we set the maximum to 10 causal
configuration variants per fine-mapped region
and excluded cases for which FINEMAP failed
to converge. We then retained noncoding var-
iants with a high Bayes factor (log10 BF ≥ 2) and
thatwere at least 1% likely to be causal for a set
of causal variants. Fine-mapped variants that
had more than one Bayes factor because they
were within 500 kb of multiple lead variants
had their highest value retained. Across all 29
GWASs, we identified 827 loci, separated by at
least 500 kb, and 57,531 fine-mapped variants.
The Variant Effect Predictor (VEP) tool (87) was
used to identify 53,874 noncoding variants.

Fine-mapped BCX blood cell trait GWAS

The BCX generated GWAS summary statistics
and fine-mapped 95% credible sets for 15 blood
traits from 746,667 participants from five global
populations (European ancestries, South Asian
ancestries, Hispanic ancestries, East Asian
ancestries, and African ancestries): RBC count,
hemoglobin, hematocrit, mean corpuscular
volume, mean corpuscular hemoglobin, MCH
concentration, RBC distribution width, WBC
count, neutrophils, monocytes, lymphocytes,
basophils, eosinophils, platelet count, and mean
platelet volume (11). Each GWAS was performed
within each global population by fitting linear
mixed models, adjusting for cohort-specific co-
variates, to generate population-specific GWAS
summary statistics. Population-specific GWAS

were fine-mapped using an approximate
Bayesian approach (88) to construct 95%
credible sets from all variants within 250 kb
of a lead variant. The 95% credible sets were
generated by ordering marginal variant pos-
terior probabilities from highest to lowest
and retaining variants until the probabilities
summed 95%. Population-specific GWASs for
each trait were then meta-analyzed using a
multiancestry meta-analysis method (89) that
also generates marginal variant posterior prob-
abilities, fromwhichmultiancestry 95% credible
sets were generated. We additionally required
that variants were at least 1% likely to be causal.
Across all 15 multiancestry meta-analyzed
GWASs, we identified 1191 loci, separated by at
least 500 kb, and 62,494 fine-mapped variants.
VEP (87) was used to identify 58,573 non-
coding variants.

Functional annotation of causal noncoding
single-nucleotide polymorphisms

We integrated multiple functional genomics
datasets for K562 cells. Specifically, we used
DNase I–hypersensitive sites (DHS) from
ENCODE (65), H3K27ac ChIP-seq peak calls
from ENCODE, and ATAC-seq peak calls that
we generated previously (81) to identify can-
didate cCREs. We used bedtools v.2.25.0 (90)
and bedops v.2.4.3 (91) to identify variants
mapping directly to cCREs. We also required
variants to be farther than 1 kb from any
gene TSS. We analyzed the UKBB and BCX
GWAS variants separately. For UKBB GWASs,
we identified 10,628 distinct variants mapping
cCREs in 629 loci. We then selected 88 variants
from 56 loci for targeting on the basis of
whether a variant was targetable and more
plausibly causal than others for a given GWAS
and locus by ranking FINEMAP log10 Bayes
factors and manual inspection of loci. For the
88 selected variants, 32 were the most prob-
able variant for at least one GWAS locus, and
52were in the top-10most probable variants.
For the 56 loci, there was a median of 10.5
(± 8.6) targetable single-nucleotide polymor-
phisms (SNPs). Elements of manual inspec-
tion included selecting variants that mapped
to intergenic regions between gene TSSs or
selectingmultiple variants thatmap proximal
to the same gene. For BCX GWASs, we iden-
tified 10,446 variantsmapping to 886 loci. We
selected 507 variants mapping to 265 loci for
targeting, including 41 variants mapping to
closed chromatin. Of the cCRE-mapping variants,
we targeted 137 that were the sole variant within
the 95% credible set and 239 variants that were
composed of all targetable 95% credible set
variants for 112 loci. The remaining 131 variants
were selected because they were identified by
GWASs from non-European ancestries and
either fine-mapped in a population-specific
GWAS or in the multiancestry meta-analysis.
K562 DHS peaks and H3K27ac, RUNX1, IKZF1,
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andNFE2ChIP-seq peaks are available from the
ENCODE Project (www.encodeproject.org). K562
ATAC-seq peaks are available from the Gene
Expression Omnibus (GEO) under accession
number GSE161002; K562 GFI1B ChIP-seq
peaks are available from GEO under accession
number GSE117944.

Plasmid cloning for lentiviral CRISPRi, cytosine
base editor, and modified gRNA scaffold vectors

To generate the KRAB-dCas9 (lentiCRISPRi
(v1)-Blast) and KRAB-dCas9-MeCP2 [lenti-
CRISPRi(v2)-Blast] plasmids, KRAB and dCas9
were polymerase chain reaction (PCR) ampli-
fied from pCC_09 (Addgene 139094) (92), and
the MeCP2 effector domain was synthesized as
a gBlock (IDT). KRAB and MeCP2 were linked
to dCas9with flexible glycine-serine linkers and
cloned into lentiCas9-Blast (Addgene 52962)
(23). To generate the FNLS-BE3-SpRY (lentiBE3-
SpRY-Blast) plasmid, we used Gibson cloning to
replace the puromycin resistance gene in
pLenti-FNLS-P2A-Puro (Addgene 110841) with
blasticidin resistance from lentiCRISPRi(v2)-
Blast. We then used Gibson cloning to replaced
SpCas9(D10A) with the SpRY nickase from
pCAG-CBE4max-SpRY-P2A-EGFP (Addgene
139999) (51). To generate the gRNA vector
(lentiGuideFE-Puro), we digested pCC_09 with
NheI and KpnI to isolate the U6 promoter and
Cas9 guide RNA scaffold with the F+E scaffold
modification (93). After gel extraction (Qiagen
28706), we ligated this piece into NheI- and
KpnI-digested pLentiRNAGuide_001 (Addgene
138150) vector using T4 ligase (NEB M0202M)
(94). Primer sequences for Gibson cloning reac-
tions are available in table S1F.

Cell culture and monoclonal cell line generation

Human embryonic kidney (HEK) 293FT cells
were acquired from Thermo Fisher Scientific
(R70007). HEK293FT (human) cells weremain-
tained at 37°C with 5% CO2 in D10 medium:
Dulbecco’s modified Eagle’s medium (DMEM)
with high glucose and stabilized L-glutamine
(Caisson DML23) supplemented with 10% fetal
bovine serum (FBS) (ThermoFisher 16000044).
K562 cells were acquired fromATCC (CCL-243)
and were maintained at 37°C with 5% CO2 in
R10medium:RPMIwith stabilizedL-glutamine
(Thermo Fisher 11875119) supplemented with
10% FBS (Thermo Fisher 16000044). Cells were
regularly passaged and tested for the presence
ofmycoplasma contaminationwith theMycoA-
lert Plus Mycoplasma Detection Kit (Lonza).
Lentivirus was produced by polyethylenimine

linear MW 25000 (Polysciences 23966) transfec-
tion of HEK293FT cells with the transfer
plasmid containing a Cas9 effector, or gRNA
library, packaging plasmid psPAX2 (Addgene
12260) and envelopeplasmidpMD2.G (Addgene
12259). At 72 hours after transfection, cell
medium containing lentiviral particles was
harvested and filtered through 0.45-mm filter

Steriflip-HV (Millipore SE1M003M00). K562
cells were transduced with lentiCRISPRi(v1)-
Blast, lentiCRISPRi(v2)-Blast, or lentiBE3-SpRY--
Blast at a lowMOI (<1). Transduced K562 cells
were selectedwith 10 mg/ml blasticidin (Thermo
A1113903) for 10 days to enrich for expression of
the Cas9 effector proteins. To isolate individual
clones, K562 polyclonal lines were serially
diluted to 50 cells per 10 ml of medium. We
then plated 100 ml of this cell-mediummixture
in 96-well round bottom plates (~0.5 cells/well).

Digital PCR for CRISPRi gene repression

We compared the single-repressor CRISPRi
(KRAB-dCas9) and dual-repressor CRISPRi
(KRAB-dCas9-MeCP2) systems by targeting the
transcription start sites and known enhancers
of three genes (MRPS23, SLC25A37, andFSCN1)
with two gRNAs per targeted region. We syn-
thesized gRNAs as top- and bottom-strand oligos
(IDT) and cloned them into BsmBI-digested
lentiGuideFE-Puro. We transduced the cells in
biological triplicate with gRNA lentiviruses at
a lowMOI and after 24 hours selected for cells
with gRNAs using puromycin (1 mg/ml, Thermo
Fisher A1113803). We harvested the cells 10 days
after transduction and extracted RNA using
TRIzol (ThermoFisher 15596026). We quanti-
fied RNA concentration by spectrophotometry
(NanoDrop). To measure gene expression, we
performed digital PCR (Formulatrix Consella-
tion) with Cy5/Iowa Black RQ target gene probes
(IDT), FAM/ZEN/Iowa Black FQ for the actin
normalizer (IDT), and Luna Universal One-Step
RT qPCR Master Mix kit (NEB E3005L) and
Tween-20 (Sigma-Aldrich P1379). We first nor-
malized the target gene expression by actin
expression per sample and then normalized
this ratio to the ratio from cells transduced with
nontargeting control gRNAs.

KRAB-dCas9-MeCP2 CRISPRi pooled screen for
essential gene gRNA depletion

We performed CRISPRi pooled screens to
quantify the KRAB-dCas9-MeCP2 inhibitory
effect window inHCT116 andMCF7 cell lines.
Both lines were acquired from ATCC (CCL-247
and and HTB-22, respectively) maintained in
the appropriatemedium (McCoy’s 5Amedium
and DMEM, respectively) supplemented with
10% serum and 1% penicillin–streptomycin.
These cell lines were cultured at 37°C, 5% CO2,
and ambient oxygen levels. Monoclonal HCT116
KRAB-dCas9-MeCP2 and MCF7 KRAB-dCas9-
MeCP2 cell lines were generated as previously
described for K562 cells. Expression was con-
firmed using Western blot.
For screening, HEK293 cells were plated in

DMEM + 10% FBS (D10) in a 15-cm dish so
that the following day cells were 90% conflu-
ent. Half of the medium was removed from
the flask, and cells in each flask were trans-
fected with 13.8 mg of a cCRE/TSS–targeting
library specific to HCT116 and MCF7, 6.6 mg

of pMD2.G (envelope plasmid), and 9.6 mg of
psPAX2 (packaging plasmid) using 1.2 ml of
Opti-MEM and 112.5 ml of polyethylenimine
linear 25K (Polysciences 23966). The follow-
ing morning, the medium was removed and
fresh D10 + 1% bovine serum albumin (BSA)
was added. Then, 48 hours later, we collected
the viral supernatant and put it immediately
on ice. We concentrated the supernatant by
centrifugation at 100,000g (Thermo Sorvall
LYNX) for 2 hours at 4°C. The resulting pellet
was resuspended in cold DMEM and stored
at –80°C until use.
We determined the appropriate titer of virus

before the experimental transduction. We trans-
duced 3M cells with a standard spinfection
protocol with different dilutions of virus in a
12-well plate and in a no-virus control well.
After adding virus, we spun the cells at 2000 rpm
for 1 hour at 37°C (Beckman Coulter Allegra
X-14R) and incubated overnight. The next day,
we plated half of the cells in each well into two
new wells of a six-well plate. In one set of
wells, we added the appropriate puromycin
concentration (1.5 mg/ml forHCT116 and 3 mg/ml
for MCF7). After all the cells in the no-virus
well had died, cells in the corresponding wells
(with puromycin) were counted to determine
the viral volume that results in 20 to 40% cell
survival, corresponding to a MOI of 0.2 to 0.5.
We cultured each cell line in the appropriate

medium and transduced 2 × 108 of them with
the CRISPR lentiviral library using spinfection
with the viral volume determined from the
previous spinfection. As before, after adding
virus, we spun cells at 2000 rpm for 1 hour at
37°C and incubated them overnight. The follow-
ing day, cells were plated at 30% confluence
and selected in the appropriate puromycin con-
centration for 3 days. After selection, we
passaged cells in 15-cm dishes for 21 days and
split at ~80% confluence.We isolated genomic
DNA from cells using a modified salting-out
precipitation. The gRNA readout was per-
formed using two rounds of PCR. For PCR1,
we used 10 mg of gDNA in each 100-ml reaction.
We pooled the PCR1 products and used the
mixture for a second PCR, adding on Illumina
sequencing adaptors and barcodes. We per-
formed PCR1 reactions using TaqB polymerase
(Enzymatics P7250L) and PCR2 reactions with
Q5 (NEB M0491). We pooled and purified
PCR2 reactions with Illumina Purification
Beads. We quantified the concentration of the
gel-extracted PCR products using Qubit dsDNA
HS Assay Kit (Thermo Fisher Q32851), and
then diluted and sequenced it on NextSeq 500
high-output (Illumina). We demultiplexed the
samples using bcl2fastq v2.20.0.422 (Illumina),
trimmedoff adapters, and aligned to our guides
with bowtie v.1.1.2 (95). We library normalized
the resulting reads (each read divided by the
total number of reads). We then used the
robust rank aggregation algorithm (96) and
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estimataed log2 fold changes as log2(day 21/
day 1). We targeted ± 5 kb of the TSS essential
genes (DepMap Chronos scores < –1) (97–100).
In total, we screened 1992 gRNAs targeting
263 essential human genes. As negative con-
trols, we embedded 1000 nontargeting gRNAs
into this library.

Flow sorting for near PAM-less base editing

We verified cytosine base editing by designing
12 gRNAs targeting CD46 splice sites using
SpliceR v1.2.0 (101). SpliceR designed gRNAs
that were predicted to disrupt CD46 splice
sites through C>T nucleotide changes. These
included gRNAs that would recognize a diverse
set of noncanonical PAMs, such as NGN, NAN,
NCN, and NTN (table S3H). We also used four
nontargeting gRNAs from theGeCKOv2 library
(23) as negative controls.We synthesized gRNAs
as top- and bottom-strand oligos (IDT) and
cloned them into BsmBI-digested lentiGuideFE-
Puro. We transduced the cells with gRNA
lentiviruses at a lowMOI in an arrayed fashion
and after 24 hours selected for cellswith gRNAs
using puromycin (1 mg/ml, Thermo Fisher
A1113803). After 6 days of selection, we pro-
ceeded to flow cytometry to measure CD46
protein. For flow cytometry, 1 × 106 cells per
condition were harvested and washed with
phosphate-buffered saline (PBS) after selec-
tion. The cells were stained for 5 min at room
temperature with LIVE/DEAD Fixable Violet
Dead Stain Kit (Thermo Fisher L34864). Sub-
sequently, the cells were stained with anti-
bodies for 20min on ice with 1 ml of CD46-APC
(clone TRA-2-10) (BioLegend 352405). Cells
were washed with PBS to remove unbound
antibodies before sorting. Cell acquisition and
sorting was performed using a Sony SH800S
cell sorter. Sequential gating was performed as
follows: exclusion of debris on the basis of
forward and side scatter cell parameters fol-
lowed by dead cell exclusion. The sorting gates
were set such that 90% of live K562 cells would
be considered CD46 positive.

CRISPR inhibition and base-editing library
design and cloning

Two individual CRISPR inhibition libraries
were designed and cloned, called STING-seq v1
and STING-seq v2, and one base-editing library
was designed and cloned, called beeSTING-seq.
For STING-seq v1, we designed 20-nt gRNAs to
target within 200 base pairs (bp) of the 88
selected plausibly causal noncoding variants
from UKBB GWASs of blood traits. We used
FlashFry v1.10.0 (22) to retain gRNAswith the
lowest predicted off-target activity, as estimated
by the Hsu-Scott score (21). Each variant was
targeted by two different gRNAs. In addition,
we included in our library 12 nontargeting
gRNAs from the GeCKOv2 library (23) as nega-
tive controls and 12 gRNAs targeting the TSSs
of six nonessential genes as positive controls.

The six nonessential genes (CD46,CD52,HSPA8,
NMU, PPIA, and RPL22) were identified by a
CRISPR knock-out screen in K562 cells using
the PICKLES database (102). We additionally
included 10 gRNAs targeting the CD55 TSS for
our fluorescence-activated cell sorting (FACS)–
based MOI estimator, bringing the total num-
ber of gRNAs to 210. For STING-seq v2, we
designed 20-nt gRNAs to target within 200 bp
of the 507 selected plausibly causal variants
from the BCX multiancestry and ancestry-
specific blood trait GWASs. We again retained
gRNAs with the lowest predicted off-target
activity, and each variant was targeted by
three different gRNAs. In addition,we included
30 nontargeting gRNAs from the GeCKOv2
library and 32 groups of three TSS-targeting
gRNAs for positive controls. We additionally
included 45 CD55 TSS-targeting gRNAs for
FACS-based MOI estimation. For beeSTING-
seq, we designed three sets of gRNAs for each
of 46 C>T select GWAS variants mapping to
CREs with cis-target genes. We followed rec-
ommended gRNA design instructions, and
positioned the target nucleotide within a 5-nt
window (103).We also included 28 nontargeting
gRNAs from the GeCKOv2 library.
To clone the STING-seq v1 gRNA library,

top- and bottom-strand oligos (IDT) were re-
suspended in water at 100 mMand thenmixed
at 1:1 ratio for each gRNA. Then, 1 ml of the
oligomixwas added to amastermix containing
1×T4 ligase buffer (NEBM0202M) and0.5 ml of
T4 PNK (NEB M0201L) and water to a final
concentration of 10 ml per reaction. For oligo
annealing, we incubated the oligo mix at 37°C
for 30 min, then 95°C for 5 min with a tem-
perature change of 1°C every 5 s until reaching
4°C. To create the oligo pool, we pooled
together 3 ml of each annealed oligo. The oligo
pool was diluted 1:10 with water and then
cloned in the lentiGuideFE-Puro, which was
linearizedwith BsmBI (ThermoFisher ER0451)
and dephosphorylated. The ligation was per-
formed in 11 reactions, with each reaction
consisting of 5 ml of Rapid Ligation Buffer
(Enzymatics B101), 0.5 ml of T7 ligase (Enzymatics
L602L), digested plasmid at 25 ng per reaction,
1 ml of diluted oligo mix and double-distilled
water to final volume of 10 ml. The ligation was
performed at room temperature for 15 min.
Next, 100 ml of the combined ligation reac-

tions were mixed with 100 ml of isopropanol,
1 ml of GlycoBlue (Thermo Fisher AM9515),
and 2 ml of 5 M NaCl (50 mM final concentra-
tion), incubated for 15min at room temperature,
and spun at 12,000g for 15 min. The pellet was
washed twice with prechilled 70% ethanol, air
dried for 15 min or until dried completely, and
resuspended in 5 ml of 1× TE buffer (Sigma).
Next, 2 ml of library ligation was added to 50 ml
of Endura cells (Lucigen) and then electro-
porated, recovered, and plated. The following
day, bacterial colonies were scraped, plasmids

were isolated using amaxi prep (Qiagen 12965),
and library representation was determined by
MiSeq (Illumina).
The STING-seq v2 and beeSTING-seq pooled

gRNA libraries were synthesized as single-
stranded oligonucleotide pools (Twist Biosci-
ences) anddiluted to 0.5 ng/ml inmolecular-grade
water. Then, 2 ml of the diluted pooled oligos
were added to a master mix containing for-
ward and reverse primer mixes (10 mM) and
NEBNext High-Fidelity 2X PCR Master Mix
(M0541S). We then PCR purified the product
and Gibson cloned it in pLentiGuideFE-Puro,
which was linearized as described above. We
used 500 ng of the digested vector, maintained
a 1:10 molar ratio of library, and incubated at
50°C for 1 hour. We concentrated DNA using
isopropanol precipitation, washed and resus-
pended the DNA, and then transformed 1 ml of
library in 25 ml of Endura cells (Endura 60242-2)
according to protocol specifications. We then
plated the transformed cells on Luria broth–
ampicillin plates to get at least 100 to 500 colo-
nies per gRNA.
The quality of all pooled libraries was

verified by sequencing with a MiSeq (Illumina)
to estimate the 90:10 quantile ratio. To gener-
ate and concentrate all pooled libraries, lentivi-
rus was generated as described above. Briefly,
we seeded 10 × 225 cm2 flasks with HEK293FT
cells and, at 70% confluency, we cotransfected
the pooled gRNA library, psPAX2, and pMD2.
G. Lentivirus was collected 72 hours after
transfection and filtered using a 0.45-mm filter.
The supernatant was then ultracentrifuged for
2 hours at 100,000g (Sorvall Lynx 6000), and
the pellet was resuspended overnight at 4°C in
PBS with 1% BSA.

MOI estimation using flow cytometry

When transducing cells at a highMOI, it is not
possible to estimate the MOI by traditional
methods (e.g., survival after drug selection) or
without the time and cost of single-cell se-
quencing. By including multiple gRNAs that
target the CD55 TSS (10 gRNAs for STING-seq
v1, 45 gRNAs for STING-seq v2), we were able
to estimate the number of gRNAs per cell (MOI)
using flow cytometry for CD55 cell surface
protein knockdown over a range of viral trans-
duction volumes. We performed two trans-
ductions for STING-seq v1 with concentrated
lentivirus (4 and 6 ml) and, after 48 hours, we
selected with puromycin for 10 days. We
performed five transductions for STING-seq
v2 with concentrated lentivirus (1, 5, 10, 20,
and 30 ml) and, after 48 hours, we selected
with puromycin for 10 days.We included three
positive control transductions with different
CD55 TSS-targeting gRNAs and three negative
control transductions with three different non-
targeting gRNAs for both experiments. For
beeSTING-seq, we performed five transductions
with concentrated lentivirus (1, 5, 10, 25, and

Morris et al., Science 380, eadh7699 (2023) 19 May 2023 12 of 17

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at N

ew
 Y

ork G
enom

e C
enter on M

ay 31, 2023



50 ml), and, after 48 hours, we selected with
puromycin for 10 days.We used themost viable
cell culture for beeSTING-seq for sequencing
(10 ml) with MACS dead cell removal kit
(Miltenyi Biotec 130-090-101) because we
observed high cell death at higher lentivirus
concentrations.
For flow cytometry, 1 × 106 cells per con-

dition were harvested and washed with PBS
after selection. The cells were stained for 5min
at room temperature with LIVE/DEAD Fix-
able Violet Dead Stain Kit (Thermo Fisher
L34864). Subsequently, the cells were stained
with antibodies for 20 min on ice with 1 ml of
CD55-FITC (clone JS11) (BioLegend 311306).
Cellswerewashedwith PBS to remove unbound
antibodies before sorting. Cell acquisition and
sorting was performed using a Sony SH800S
cell sorter. Sequential gating was performed as
follows: exclusion of debris on the basis of for-
ward and side scatter cell parameters followed
by dead cell exclusion. The sorting gates were
set such that 90% of live K562 cells would be
considered CD55 positive. From this estima-
tion, we can estimate MOI using X = 1 – NY,
where X is the proportion of cells with CD55
targeting gRNAs,N is the inverse of the number
of CD55 targeting gRNAs divided by the total
library size, leavingX as the predictedMOI. For
the STING-seq v1 library, N = 1 – (10/210), and
for the STING-seq v2 library,N = 1 – (45/1695).
We estimated that 6 ml of STING-seq v1 viral
volume yielded an MOI of ~13.5 and 30 ml of
STING-seq v2 viral volume yielded an MOI of
~30, and elected to use these conditions for
our STING-seq assay (fig. S2).

Expanded CRISPR-compatible Cellular Indexing
of Transcriptomes and Epitopes

For the Expanded CRISPR-compatible Cellular
Indexing of Transcriptomes and Epitopes
sequencing (ECCITE-seq) and the STING-seq
v1 experiment, we ran one lane of a 10×
Genomics 5′ kit (ChromiumSingle Cell Immune
Profiling Solution v1.0, 1000014, 1000020, and
1000151) with superloading and recovered
15,285 total cells (including multiple cells per
droplet counts or “multiplets”). Cell hashing
was performed as described in a previously
published protocol using four hashtag-derived
oligonucleotides (HTOs) using hyperconjugation
(24). Gene expression (cDNA), hashtags (HTOs),
and gRNA (guide-derived oligos, GDOs) libraries
were constructed by following 10x Genomics
and ECCITE-seq protocols. We sequenced the
cDNA, HTO, and GDO libraries with two
NextSeq 500 high-output runs (Illumina). For
the ECCITE-seq and the STING-seq v2 exper-
iment, we ran four lanes of a 10x Genomics 5′
v2 kit (Chromium Next GEM Single Cell 5′ Kit
v2 1000265) with superloading. We recovered
82,339 total cells (including multiplets). Cell
hashing was performed using eight HTOs fol-
lowed by staining with a 188 antibody-tagged

oligonucleotides (ADTs) panel (BioLegend)
(table S3B). The cDNA, HTO, ADT, and GDO
libraries were constructed by following 10x
Genomics and ECCITE-seq protocols. We
sequenced the cDNA, HTO, ADT, and GDO
libraries with one NovaSeq 6000 S1 run and
two NovaSeq 6000 S2 runs (Illumina). For
the ECCITE-seq and beeSTING-seq experi-
ment, we ran three lanes of a 10x Genomics
5′ v2 kit with superloading and recovered
39,049 total cells, including multiplets. Cell
hashing was performed using nine HTOs.
The cDNA, HTO, and GDO libraries were
constructed by following 10x Genomics and
ECCITE-seq protocols. We sequenced the
cDNA, HTO, and GDO libraries with one
NextSeq 500 mid-output run, one NovaSeq
6000 SP run, and one NovaSeq 6000 S1 run
(Illumina).

Single-cell data processing

UMI count matrices were generated for all
single-cell sequencing libraries with 10x Cell
Ranger v.6.0.0 (104). We generated outputs
using the Gene Expression Output, Antibody
Capture Output, and CRISPR Guide Capture
Output functions. We then analyzed the UMI
countmatrices in R v.4.0.2 with Seurat v.4.0.0
(105) and tested for differential gene expres-
sion and protein levels within the SCEPTRE
framework (26). The distributions of cDNA,
GDO, HTO, and ADT UMIs were inspected
manually for each lane of 10× sequenced.
Custom thresholds were set to remove outliers
for total cDNA count, unique genes detected,
mitochondrial percentage, total gRNA count,
unique gRNAsdetected, totalHTO count, unique
HTOs detected, total ADT count, and unique
ADTs detected. Lanes were merged for STING-
seq v2 and beeSTING-seq only after quality
control was completed. For STING-seq v1, we
processed cDNA UMI count matrices and
retained cells between the 15th to 99th per-
centiles for unique gene count, between the
20th and 99th percentiles for total cDNAUMI
count, and between the 5th and 90th percen-
tile for mitochondrial percentage. Next, we
center-log-ratio (CLR) transformed the HTO
UMI counts and demultiplexed cells by their
transformed HTO counts to identify singlets.
We used theHTODemux function implemented
in Seurat v.4.0.0 to maximize the number of
singlets detected. We used then processed the
GDOUMI countmatrix, keeping cells between
the 1st and 99th percentiles for total GDO
count and used 10x Cell Ranger predicted GDO
thresholds per cell, but required at least three
UMIs per GDO to assign a GDO to a given cell.
This resulted in a high-confidence set of 7667
single cells for the STING-seq v1 experiment.
For STING-seq v2, we uniformly processed all
four cDNA UMI count matrices and retained
cells between the 1st and 99th percentile for
unique gene count, between the 10th and 99th

percentile for total cDNA UMI count, and be-
tween the 1st and 90th percentile for mito-
chondrial percentage. Next, we CLR transformed
the HTO UMI counts and maximized singlet
count using the HTODemux function. We then
processed the GDO UMI count matrices,
keeping cells between the 1st and 99th per-
centiles for total GDO count and again used
the 10x Cell Ranger predicted GDO thresholds
per cell, but required at least three UMIs per
GDO. This resulted in a high-confidence set of
38,916 cells for differential expression testing.
We further applied quality control filters for
ADTs, retaining cells with between the 1st and
99th percentiles for total ADT count. This
resulted in 38,133 cells for differential protein
testing. For beeSTING-seq, we uniformly pro-
cessed all three cDNA UMI count matrices
and retained cells between the 10th and 90th
percentiles for unique gene count, between
the 10th and 90th percentiles for total cDNA
count, and between the 10th and 90th percen-
tiles for mitochondrial percentage. We then
CLR transformed the HTO counts and used
the HTODemux function to maximize singlets
and retained cells between the 1st and 99th
percentiles for total GDO counts. 10x Cell
Ranger set most UMI thresholds to 1, so we
generated a series of GDOUMI countmatrices
with thresholds from 1 to 5 to iteratively test
optimal GDO thresholds for each gRNA. This
resulted in a series of UMI count matrices for
each GDO threshold. We had sets of 12,068
cells (GDO threshold = 1), 11,235 cells (GDO
threshold = 2), 9739 (GDO threshold = 3), 7869
(GDO threshold = 4), and 5896 (GDO thresh-
old = 5) for differential expression testing.

Differential gene expression– and protein-level
testing with SCEPTRE

We used the processed UMI count matrices
for gene expression or protein levels and gRNA
expression, along with accompanying single-
cell metadata to use as covariates in model
fitting (table S3B). For STING-seq analyses, we
defined for each cCRE targeted by two to three
gRNAs a list of genes within 500 kb to be
tested for differential expression in cis. For each
gene per set of gRNAs, we extracted that gene’s
UMI counts and labeled the cells with the given
gRNAs.We then tested for differential outcomes
within the SCEPTRE framework (26), adjust-
ing for the following single-cell covariates for
expression tests: total gene expression UMIs,
unique genes, total gRNA expression UMIs,
unique gRNAs, percentage of mitochondrial
genes, and 10x lane (for STING-seq v2 and
beeSTING-seq). For protein tests, we adjusted
for total ADT count, total HTO count, total gRNA
expression UMIs, unique gRNAs, and ADTs for
four mouse-specific antibody controls to rep-
resent nonspecific binding. We developed
SCEPTRE as a statistical framework to analyze
high-MOI CRISPR screens in single cells with
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state-of-the-art calibration. First, SCEPTRE fits
a negative binomial distribution to measure
the effect of a single gRNA on a given gene
using the Z score. Then, the distribution of
gRNAs to cells is randomly sampled to build a
gRNA-specific null distribution, recomputing
a negative binomial Z score. A skew-t distri-
bution is fit to compare the test Z score and
the null distribution, and a two-sided P value
is derived, allowing for significance tests of
increased or decreased gene expression or
protein levels (26). To test for differential ex-
pression in trans, we defined for each set of
gRNAs a list of all genes detected in at least 5%
of cells and repeated the test above. Non-
targeting gRNAs were tested against all genes
used in the cis and trans settings discussed
previously and randomly sampled to match
the number of cis and trans tests displayed on
QQ-plots. For each set of gRNAswith a cis-effect
target gene we then performedmarginal gRNA-
gene pair testing, observing that the number of
cells bearing gRNAs is the main driver behind
statistical power (fig. S6). To determine signifi-
cance for multiple hypotheses (genes) tested in
cis, SCEPTRE P values were adjusted with the
Benjamini-Hochberg procedure. For beeSTING-
seq differential expression tests, we tested each
gRNA against its known target gene from
STING-seq analyses. We used for each gRNA
the lowest GDO UMI threshold that resulted
in at least 100 cells per gRNA and repeated this
strategy for all nontargeting gRNAs against the
same set of known cis-effect target genes. We
then repeated differential expression testing,
grouping together GWAS-CRE targeting gRNAs
if they shared concordant effects and UMI
thresholds and evaluating their combined
effects on target gene expression.
To report significant results for STING-seq

analyses, we identified cis-target genes if they
were significant at a 5% FDR (Benjamini-
Hochberg–adjusted SCEPTRE P < 0.05). We
defined trans-target genes of each GWAS-CRE
as those significant at a stricter 1% FDR. For
beeSTING-seq analyses, we identified cis-target
genes if they were significant at a 5% FDR. We
examined all STING-seq genes significant at
a 10% FDR and beeSTING-seq genes with
SCEPTRE P < 0.05 to compare the trans-
regulatory network effects from perturbing
HHEX and IKZF1 GWAS-CREs with direct
variant insertion.

Fine-mapped eQTL credible set integration

We examined 31 fine-mapped eQTL studies
from the eQTL Catalogue (31) specific to blood
traits. Specifically, we used eQTLs identified
from humanmacrophages (106, 107), mono-
cytes (37, 108, 109), neutrophils (37), lympho-
blastoid cell lines (110–113), whole blood
(110, 114, 115), induced pluripotent stem cells
(116–118), T cells (37, 109, 112), B cells (109), and
natural killer cells (109). We then retained

eQTL variants that were at least 1% plausibly
causal and investigated whether our fine-
mapped GWAS variants were in these data.
eQTL summary statistics are available from
the eQTL Catalog (www.ebi.ac.uk/eqtl).

K562 HiChIP for H3K27ac-interacting promoters

AQuA-HiChIP cell libraries were prepared as
described previously (119). Briefly, NIH3T3
cells (mouse) and K562 cells were grown in
the appropriate medium. Cells were fixed in
1% formaldehyde for 10 min and quenched to
a final concentration of 125 nM glycine. Two
million fixed mouse cells were mixed with
10 million fixed K562 cells. The cells were lysed
in 0.5% SDS, quenched with 10% Triton X-100,
and digested with MboI (NEB R0147M). The
DNA overhangs were blunted, biotinylated
(Thermo Fisher 19524016), and ligated. Nuclei
were spun down, resuspended in nuclear lysis
buffer, and sonicated using a Covaris LE220
with the following conditions: fill level 10, PIP
450, duty factor 30, and CPB 200. The sheared
DNA was incubated with Dynabeads Protein
A (Thermo Fisher 10001D) for 2 hours at 4°C.
The tubes were placed on a magnet and the
supernatant was kept. Immunoprecipitation
was performed with a cross-species reactive
H3K27ac antibody (Active Motif 39133). The
samples were incubated with the antibody over-
night at 4°C. The samples were then washed,
eluted, and treated with Proteinase K. The
samples were purified using Zymo DNA Clean
& Concentrator. Biotin capture was performed
with Dynabeads M-280 Streptavidin (Thermo
Fisher 11205D), followed by library prepara-
tion. The amplified libraries were purified
with Illumina Sample Purification Beads. The
libraries were sequenced using paired-end
reads with a NovaSeq 6000 S2 (Illumina) to
generate 100 to 200 million read pairs per
sample.
HiChIP paired end reads were mapped to

the hg19 genome using HiC-Pro v.2.10.1 (120).
Default settings were using to remove dup-
licate reads, identify valid interactions, and
generate contact maps. Statistically significant
contacts were identified using FitHiChIP v.9.1
(121) at a 5% FDR. H3K27ac ChIP-seq data (65)
were used as a reference set of peaks in the
FitHiChIP pipeline.

Trans-regulated network gene set enrichments

We used chromatin immunoprecipitation se-
quencing (ChIP-seq) datasets in K562 cells to
identify GFI1B (64), NFE2, IKZF1, and RUNX1
(65) TF-binding sites. There we no publicly
available HHEX K562 ChIP-seq datasets. We
assigned the closest protein-coding gene to
each ChIP-seq peak with bedtools v2.25.0 (90).
For predicted miRNA targets we used the
TargetScan database (66, 67). To test for en-
richment of ChIP-seq peak or TargetScan genes
in trans-regulatory gene sets, we fit logistic

regression models adjusting for K562 ex-
pression (gene expression counts from scRNA-
seq data) and computed odds ratios with 95%
confidence intervals. To construct GWAS-
identified sets of genes, we used all fine-mapped
SNPs from the 29 UKBB GWASs and 15 BCX
GWASs previously described (categorized by
cell type) with a high Bayes factor for being
plausibly causal (log10 BF ≥ 2) and that were at
least 1% plausibly causal. GWAS gene enrich-
ment was performed in a similar fashion as for
ChIP-seq peaks.

Gene coexpression analyses and bone marrow
single-cell gene expression

To compute coexpression matrices for each
trans-regulatory network, we used cDNAUMI
count matrices with missing genes per cell
imputedwith theMAGIC algorithm (122). As a
measure of coexpression, the biweight mid-
correlation, a weighted correlation analysis,
was calculated for each pair of genes (123).
Geneswere then clustered on the basis of their
coexpression patterns by hierarchical clustering.
TF-binding site, direct miRNA target, and
GWAS gene enrichment was performed as
described above. We used Human Cell Atlas
single-cell RNA-sequencing from 35 bone
marrow donors (69) and identified 27 cell
types as described previously (70). Single-cell
data were processed with Seurat v.4.0.0 to
generate uniform manifold approximation
and projection (UMAP) plots and heatmaps.
To visualize entire trans-regulatory network
clusters on a UMAP plot, we plotted the mean
expression of all cluster genes within each cell.

STING-seq power estimations

We down-sampled 136 cis effects of gRNAs
targeting CREs on their target genes across
two key conditions for experimental design:
sequencing read depth per cell and the num-
ber of cells per gRNA. We sequenced all
STING-seq libraries to a depth of ~55,000 to
65,000 reads per cell and thus repeated the
entire STING-seq quality control and differ-
ential expression testing pipeline with 5000,
15,000, 25,000, 35,000, 45,000 and 55,000.
Sequencing reads were down-sampled to
generate cDNA UMI count matrices with
DropletUtils v.1.18.0 (124, 125) and repeated
10 times with different seed numbers. For
each set of 10 randomly down-sampled UMI
countmatrices at each read depth, we repeated
differential expression testing with SCEPTRE.
We required at least 500 cells bearing each set
of gRNAs, then at each set of 10 randomly
down-sampled UMI count matrices at each
read depth, we randomly down-sampled the
number of cells bearing each set of gRNA from
at least 500 cells to 50 and repeated this pro-
cess 10 times at each stage. We averaged the
SCEPTRE skew fit t test P values within rep-
licates at each to compute precise measurements
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for each stage in the down-sampling procedures.
We then divided all genes by their expression
level and cis effects by their log2-fold changes
into tertiles to examine at what number of cells
and read depth could nominal significance
(skew fit t test P < 0.0001) be attained.
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Editor’s summary
Genome-wide association studies (GWASs) identify links between individual gene variants and various traits and
diseases. Unfortunately, the findings from these studies cannot be used to determine whether the gene variants
associated with a disease directly cause the condition or just happen to be located near biologically relevant genes or
regulatory regions. Most of the variants identified through GWASs are located in noncoding regions of the genome,
further increasing the difficulty of interpretation. A workflow developed by Morris et al. addresses this problem by using
CRISPR-based editing to directly introduce variants of interest and then assessing their effects on gene expression in
individual cells, thereby identifying their contributions to specific bood cell traits. —Yevgeniya Nusinovich
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